ppo-LunarLander-v2 / config.json
teresayong's picture
Upload PPO LunarLander-v2 trained agent
8c27f26 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f1539ca60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f1539caf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f1539cb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f1539cc10>", "_build": "<function ActorCriticPolicy._build at 0x7f5f1539cca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f1539cd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f1539cdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f1539ce50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f1539cee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f1539cf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f1539d000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f1539d090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5eb7330c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728297423098992505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABr/j73fY5k/rSbJvSHhp74GQY69/bwfPQAAAAAAAAAA8zaEPXs2r7qmOFK2wK0zscRJErrYIX41AACAPwAAgD+al0U99iWFP/2sxjwZ15W+VzSrO/LbCL0AAAAAAAAAAJpbMbygFZE+VRmFPkO8N76ZkrQ94aWBPQAAAAAAAAAAWl7tvTENvD2dSUw+jdpAvvl8rDyr0W88AAAAAAAAAACaSQI+PcA2uyaAjrvPIu84eAF6vHKjszoAAAAAAACAP2ayoLyNDj0/3G2pO7U+i76lTKC86lRMPAAAAAAAAAAAAGk2PWhrwD2HacC9/NdTvqXnrr07OSy9AAAAAAAAAACAb2i+cD2FP4J1i75yiZi+REGQvrPF7TwAAAAAAAAAAFpb4735fNM+6N9tPvoaV77e9s+8e56iPAAAAAAAAAAAM//6vDM6mT82Sxu+Bo2vvrK5SD3OoGO8AAAAAAAAAAATQs4+a7QjP4qQa75J44i+AfPEPbs+dbwAAAAAAAAAAIbVWT7gEms/gsaBO9WatL5+aLY9Hhr9vAAAAAAAAAAADa7VPY+KcLquZeS6ZED2tegRG7sD3wU6AACAPwAAgD8Ah2U9KchOuoyprjimdLQz3tA2uLjdzbcAAIA/AACAPzMKCr0UUIe6Q755OXaAnjQBu3M6fpaQuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFuOX6qKgqWMAWyUTegDjAF0lEdAkb5UKZ2IPHV9lChoBkdAYV21IAfdRGgHTegDaAhHQJG+8zUI9kl1fZQoaAZHQGdXQdKdxyZoB03oA2gIR0CRxYq9GqgidX2UKGgGR0BjE8IRh+fAaAdN6ANoCEdAkcmFbRneznV9lChoBkdATzPRE4Nqg2gHS/RoCEdAkcuft6X0G3V9lChoBkdAZnJxbSqlxmgHTegDaAhHQJHMC3UhFE11fZQoaAZHQGdQU96kZaVoB03oA2gIR0CRzh619fCzdX2UKGgGR0BjJ7eKsMiKaAdN6ANoCEdAkc48zZYgaHV9lChoBkdAPSjl5nlGPWgHTTcBaAhHQJHPq7yxzJZ1fZQoaAZHQGPHtZNfw7VoB03oA2gIR0CR1akYoAn2dX2UKGgGR0BjAu+TNdJKaAdN6ANoCEdAkdnruYx+KHV9lChoBkdAYbXrqt5lfGgHTegDaAhHQJHam12JSBN1fZQoaAZHwBEjiXIEKVpoB00gAWgIR0CR34cc2itadX2UKGgGR0BiFCy0KJEZaAdN6ANoCEdAkeP6XjU/fXV9lChoBkdAYsKr6LwWnGgHTegDaAhHQJHmvTspobp1fZQoaAZHQGR/O1OTJQtoB03oA2gIR0CR6sdELH+7dX2UKGgGR0BxQtMJx//eaAdNCgJoCEdAkeu4RywOfHV9lChoBkdAY2sB4lhPTGgHTegDaAhHQJHstV1fVqh1fZQoaAZHQGKvfXXiBGxoB03oA2gIR0CR72TjvNNbdX2UKGgGR0BxN9P9DQZ5aAdNNgJoCEdAkfBaP4mCy3V9lChoBkdAYHOju8brC2gHTegDaAhHQJH2WnqFAVx1fZQoaAZHQGSGzJIUahpoB03oA2gIR0CSEtlBQemvdX2UKGgGR0Bg7g+fRNRFaAdN6ANoCEdAkhiKNhmXgXV9lChoBkdAY24ZKnNxEWgHTegDaAhHQJIbBPwd8zB1fZQoaAZHQGSLgnUlRgtoB03oA2gIR0CSH9BBAv+PdX2UKGgGR0Bt3yeumrKeaAdNHgNoCEdAkiazPWxyGXV9lChoBkdAY0jRGc4HX2gHTegDaAhHQJImxXjlxOt1fZQoaAZHQHD+KzeGfwtoB02IAmgIR0CSJt2pyZKGdX2UKGgGR0BoK98zAN5MaAdN6ANoCEdAkinVFQVKw3V9lChoBkdAYr/rdFfAsWgHTegDaAhHQJIqRvQ4S6F1fZQoaAZHQGTqAr6LwWpoB03oA2gIR0CSLYR/mT1TdX2UKGgGR0BjotkpZwGXaAdN6ANoCEdAkjMn8TBZZHV9lChoBkdAcX7z7MxGlWgHTcADaAhHQJI1wUO/cnF1fZQoaAZHQG+5cfNiYsxoB03ZA2gIR0CSNi21D0DmdX2UKGgGR0BgJ3EyckMTaAdN6ANoCEdAkjuerdWQwXV9lChoBkdAZt+f0VafSWgHTegDaAhHQJI8lapxWDJ1fZQoaAZHQHD0lgQYk3VoB03BAWgIR0CSPfGMn7YTdX2UKGgGR0Bu66925hBraAdN0AJoCEdAkkMK59Vmz3V9lChoBkdAYJBN34bjtGgHTegDaAhHQJJDXjvNNah1fZQoaAZHQHJtzBdld1NoB03NAWgIR0CSQ3prk8zRdX2UKGgGR0BsT8GgSOBEaAdNQwJoCEdAkliELMLWqnV9lChoBkdAcaEZPEbYLGgHTcMBaAhHQJJY/hBJI2B1fZQoaAZHQG4zIna37UJoB00rAmgIR0CSWhu5z5oHdX2UKGgGR0Bjpqg/TspoaAdN6ANoCEdAkl2r8aXKKnV9lChoBkdAbmlAxBVuJmgHTbEBaAhHQJJfLvDxb0R1fZQoaAZHQG92zpX6qKhoB03qAWgIR0CSX5eXiR4hdX2UKGgGR0BZdklZ5iVjaAdN6ANoCEdAkmD4IOYplXV9lChoBkdAcD2WEsasIWgHTfoBaAhHQJJjAZBLPD51fZQoaAZHQGfCNe2NNrVoB03oA2gIR0CSZoC2+fyxdX2UKGgGR0BxPUJ8fFJhaAdN0gFoCEdAkmf57w8W9HV9lChoBkdAZjayjYZl4GgHTegDaAhHQJJsZusLfDV1fZQoaAZHQHB2wPy08eVoB01fAWgIR0CSc34G2TgVdX2UKGgGR0BwoJKraM72aAdNVwFoCEdAknY/7iyY5XV9lChoBkdAcHBmce8wpWgHTR0DaAhHQJJ7VSydFv11fZQoaAZHQG9Zryc0+C9oB00hAmgIR0CSfyNbkfcOdX2UKGgGR0BuVZqCYkVvaAdNigFoCEdAkoD7J0W/J3V9lChoBkdAcloNDc/MXGgHTeUCaAhHQJKCSLqD9O11fZQoaAZHQGP4xQBPsRhoB03oA2gIR0CShe8iOeasdX2UKGgGR0Bt6XvMKTjeaAdNmQFoCEdAkoY6Pjn3c3V9lChoBkdAa9+c/+sHSmgHTbYDaAhHQJKJjQZ4wAV1fZQoaAZHQHAWSVrylN1oB01vAWgIR0CSiadMTN+tdX2UKGgGR0BkR/1UVBUraAdN6ANoCEdAkotZntfG/HV9lChoBkdAZio57PY4AGgHTegDaAhHQJKLkNoakyl1fZQoaAZHQGZJFt8/lhhoB03oA2gIR0CSjX580DU3dX2UKGgGR0Blu/Lq2SdOaAdN6ANoCEdAkqAHaakRBnV9lChoBkdAb3t6Q/5ckmgHTeICaAhHQJKgMFGG21F1fZQoaAZHQG9Sf7zkIX1oB014AWgIR0CSoUI1tO2zdX2UKGgGR0Bs1Jy6tknUaAdNyQNoCEdAkqHbDMvAXXV9lChoBkdAbr44bS7XhGgHTeEBaAhHQJKjEhX8wYd1fZQoaAZHQHI3/MKTjedoB013AWgIR0CSo2W43FUAdX2UKGgGR0BeF0WIoE0SaAdN6ANoCEdAkqRtOmBOHnV9lChoBkdASgW6RQrMDGgHTQIBaAhHQJKkjR1HOKR1fZQoaAZHQHEZZpi7TUloB020AWgIR0CSpKIUrTYvdX2UKGgGR0BwbfjENvwWaAdNlgFoCEdAkqeb2g398HV9lChoBkdAbYUgctGutGgHTbUBaAhHQJKo0sqaw2V1fZQoaAZHQEa8ubqhUR5oB00TAWgIR0CSqY3SKFZgdX2UKGgGR0BybbY5DJEIaAdNhgFoCEdAkqpx1DBuXXV9lChoBkdAbem1w5vLo2gHTYEBaAhHQJKx+ETQE6l1fZQoaAZHQGsdd0aIeo1oB02AAWgIR0CSsiCAMDwIdX2UKGgGR0Bt14tjCpFTaAdNNwFoCEdAkrJPgzguRXV9lChoBkdAcIIR+jM3ZWgHTXgBaAhHQJK3N3jdYXB1fZQoaAZHwCJQEbHZK4BoB00NAWgIR0CSuLs6JZW8dX2UKGgGR0BiYBdOZb6haAdN6ANoCEdAkrknMlkYoHV9lChoBkdAbxWeRxLkCGgHTc0BaAhHQJK54XCTEBN1fZQoaAZHQHGSkxASnLtoB01zAWgIR0CSuqGbkOqedX2UKGgGR0BxdQm7aqS6aAdNNQJoCEdAkrvX7xd6cHV9lChoBkdAcDxrpJPIn2gHTfABaAhHQJK89MHryDt1fZQoaAZHQG6ie4kNWlxoB03nAmgIR0CSvm1HOKO1dX2UKGgGR0ByHQe6qbSaaAdNswFoCEdAkr8piVjZtnV9lChoBkdAcBPOcUdq+WgHTX4BaAhHQJLEDJ1aGHp1fZQoaAZHQDvwdQwblzVoB0v2aAhHQJLEarU9ZA91fZQoaAZHQGwX36InBtVoB006AmgIR0CSxOs6q815dX2UKGgGR0Bw8bTnaFmGaAdNHQNoCEdAksdpKjBVMnV9lChoBkdAcECB+nZTQ2gHTdoBaAhHQJLIFXXAdn11fZQoaAZHQGEsaQmu1WtoB03oA2gIR0CSymKzAvcrdX2UKGgGR0BIxi++M6zWaAdL+WgIR0CSywrHU+cIdX2UKGgGR0BvWCZfD1oQaAdNcwFoCEdAksvgUlAu7HV9lChoBkdAcmOxxkupTGgHTZQBaAhHQJLMnxWkrPN1fZQoaAZHQHBGGfTTfBNoB02xAWgIR0CSzNKoAGSqdX2UKGgGR0BvLvY6GQCCaAdN5wFoCEdAks3En5SFXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}