terry69 commited on
Commit
c8d374b
·
verified ·
1 Parent(s): c924b05

Model save

Browse files
README.md CHANGED
@@ -1,199 +1,67 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: meta-llama/Llama-2-7b-hf
9
+ model-index:
10
+ - name: llama2-20p-POE
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # llama2-20p-POE
18
 
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: nan
22
 
23
+ ## Model description
24
 
25
+ More information needed
26
 
27
+ ## Intended uses & limitations
28
 
29
+ More information needed
30
 
31
+ ## Training and evaluation data
32
 
33
+ More information needed
 
 
 
 
 
 
34
 
35
+ ## Training procedure
36
 
37
+ ### Training hyperparameters
38
 
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 4
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 4
46
+ - gradient_accumulation_steps: 2
47
+ - total_train_batch_size: 32
48
+ - total_eval_batch_size: 4
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: cosine
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 1
53
 
54
+ ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:-----:|:----:|:---------------:|
58
+ | 0.7591 | 1.0 | 675 | nan |
59
 
 
60
 
61
+ ### Framework versions
62
 
63
+ - PEFT 0.7.1
64
+ - Transformers 4.39.0.dev0
65
+ - Pytorch 2.2.2+cu121
66
+ - Datasets 2.14.6
67
+ - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10540e27a1ce26a5685bf6df50cc3ddceaf3acd7563f763984d0d8cd1dfab48a
3
  size 60089544
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40ddb079850c03f5d4532ebe864139d49dc71b1f17faba60ce25118cda620628
3
  size 60089544
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.7647893634548893,
4
+ "train_runtime": 21987.6737,
5
+ "train_samples": 21594,
6
+ "train_samples_per_second": 0.982,
7
+ "train_steps_per_second": 0.031
8
+ }
runs/May02_16-56-01_ip-172-31-69-60.ec2.internal/events.out.tfevents.1714669018.ip-172-31-69-60.ec2.internal.15901.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f20c4c61a1678f453c6c1cabea27bee1f8d43f13934f5fd8f04920c42e6e2ff
3
- size 25919
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:523ff3552f4df64ec145dc96092a80447a2e0ab3271e29491abca7852efd8734
3
+ size 33929
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.7647893634548893,
4
+ "train_runtime": 21987.6737,
5
+ "train_samples": 21594,
6
+ "train_samples_per_second": 0.982,
7
+ "train_steps_per_second": 0.031
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,990 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 675,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.028420851102407323,
14
+ "learning_rate": 2.9411764705882355e-06,
15
+ "loss": 0.8769,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 0.02533437087421799,
21
+ "learning_rate": 1.4705882352941177e-05,
22
+ "loss": 0.863,
23
+ "step": 5
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.029598127358419903,
28
+ "learning_rate": 2.9411764705882354e-05,
29
+ "loss": 0.8899,
30
+ "step": 10
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 0.04418645965251518,
35
+ "learning_rate": 4.411764705882353e-05,
36
+ "loss": 0.8643,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 0.03,
41
+ "grad_norm": 0.08391069341850195,
42
+ "learning_rate": 5.882352941176471e-05,
43
+ "loss": 0.8164,
44
+ "step": 20
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "grad_norm": 0.0848430702291638,
49
+ "learning_rate": 7.352941176470589e-05,
50
+ "loss": 0.838,
51
+ "step": 25
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "grad_norm": 0.07340453634110397,
56
+ "learning_rate": 8.823529411764706e-05,
57
+ "loss": 0.8371,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.05,
62
+ "grad_norm": 0.060721401358425686,
63
+ "learning_rate": 0.00010294117647058823,
64
+ "loss": 0.7967,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.06,
69
+ "grad_norm": 0.06406699741542068,
70
+ "learning_rate": 0.00011764705882352942,
71
+ "loss": 0.7952,
72
+ "step": 40
73
+ },
74
+ {
75
+ "epoch": 0.07,
76
+ "grad_norm": 0.0702367088144725,
77
+ "learning_rate": 0.0001323529411764706,
78
+ "loss": 0.7785,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.07,
83
+ "grad_norm": 0.05482720735795007,
84
+ "learning_rate": 0.00014705882352941178,
85
+ "loss": 0.7855,
86
+ "step": 50
87
+ },
88
+ {
89
+ "epoch": 0.08,
90
+ "grad_norm": 0.061311996254463264,
91
+ "learning_rate": 0.00016176470588235295,
92
+ "loss": 0.7836,
93
+ "step": 55
94
+ },
95
+ {
96
+ "epoch": 0.09,
97
+ "grad_norm": 0.057997545698835314,
98
+ "learning_rate": 0.00017647058823529413,
99
+ "loss": 0.7932,
100
+ "step": 60
101
+ },
102
+ {
103
+ "epoch": 0.1,
104
+ "grad_norm": 0.04913048738654215,
105
+ "learning_rate": 0.0001911764705882353,
106
+ "loss": 0.7746,
107
+ "step": 65
108
+ },
109
+ {
110
+ "epoch": 0.1,
111
+ "grad_norm": 0.051276736158220364,
112
+ "learning_rate": 0.00019999464266898484,
113
+ "loss": 0.7464,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 0.11,
118
+ "grad_norm": 0.04995736942327917,
119
+ "learning_rate": 0.00019993437928712978,
120
+ "loss": 0.7248,
121
+ "step": 75
122
+ },
123
+ {
124
+ "epoch": 0.12,
125
+ "grad_norm": 0.045680340036933116,
126
+ "learning_rate": 0.0001998071963486563,
127
+ "loss": 0.7855,
128
+ "step": 80
129
+ },
130
+ {
131
+ "epoch": 0.13,
132
+ "grad_norm": 0.053344671279534676,
133
+ "learning_rate": 0.00019961317901970953,
134
+ "loss": 0.7396,
135
+ "step": 85
136
+ },
137
+ {
138
+ "epoch": 0.13,
139
+ "grad_norm": 0.05347208673468481,
140
+ "learning_rate": 0.0001993524572210807,
141
+ "loss": 0.7623,
142
+ "step": 90
143
+ },
144
+ {
145
+ "epoch": 0.14,
146
+ "grad_norm": 0.044577349788325,
147
+ "learning_rate": 0.00019902520554120772,
148
+ "loss": 0.7595,
149
+ "step": 95
150
+ },
151
+ {
152
+ "epoch": 0.15,
153
+ "grad_norm": 0.04633173399608109,
154
+ "learning_rate": 0.00019863164311926433,
155
+ "loss": 0.7759,
156
+ "step": 100
157
+ },
158
+ {
159
+ "epoch": 0.16,
160
+ "grad_norm": 0.044125485710741395,
161
+ "learning_rate": 0.00019817203349841738,
162
+ "loss": 0.7858,
163
+ "step": 105
164
+ },
165
+ {
166
+ "epoch": 0.16,
167
+ "grad_norm": 0.041739410620092,
168
+ "learning_rate": 0.00019764668444934854,
169
+ "loss": 0.7682,
170
+ "step": 110
171
+ },
172
+ {
173
+ "epoch": 0.17,
174
+ "grad_norm": 0.046548199607491646,
175
+ "learning_rate": 0.0001970559477641606,
176
+ "loss": 0.7442,
177
+ "step": 115
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "grad_norm": 0.04287304549804181,
182
+ "learning_rate": 0.0001964002190208052,
183
+ "loss": 0.7966,
184
+ "step": 120
185
+ },
186
+ {
187
+ "epoch": 0.19,
188
+ "grad_norm": 0.04461470993270133,
189
+ "learning_rate": 0.00019567993731818984,
190
+ "loss": 0.7678,
191
+ "step": 125
192
+ },
193
+ {
194
+ "epoch": 0.19,
195
+ "grad_norm": 0.039705545161659035,
196
+ "learning_rate": 0.00019489558498214196,
197
+ "loss": 0.7345,
198
+ "step": 130
199
+ },
200
+ {
201
+ "epoch": 0.2,
202
+ "grad_norm": 0.03330898777260923,
203
+ "learning_rate": 0.00019404768724242666,
204
+ "loss": 0.7714,
205
+ "step": 135
206
+ },
207
+ {
208
+ "epoch": 0.21,
209
+ "grad_norm": 0.046594949440474036,
210
+ "learning_rate": 0.00019313681188103457,
211
+ "loss": 0.7757,
212
+ "step": 140
213
+ },
214
+ {
215
+ "epoch": 0.21,
216
+ "grad_norm": 0.04928885679685318,
217
+ "learning_rate": 0.000192163568851975,
218
+ "loss": 0.8217,
219
+ "step": 145
220
+ },
221
+ {
222
+ "epoch": 0.22,
223
+ "grad_norm": 0.04466472170425771,
224
+ "learning_rate": 0.00019112860987282958,
225
+ "loss": 0.7356,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 0.23,
230
+ "grad_norm": 0.05078422739553919,
231
+ "learning_rate": 0.0001900326279883392,
232
+ "loss": 0.7262,
233
+ "step": 155
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "grad_norm": 0.042393502583193486,
238
+ "learning_rate": 0.00018887635710631716,
239
+ "loss": 0.791,
240
+ "step": 160
241
+ },
242
+ {
243
+ "epoch": 0.24,
244
+ "grad_norm": 0.04096339138017866,
245
+ "learning_rate": 0.00018766057150619865,
246
+ "loss": 0.7621,
247
+ "step": 165
248
+ },
249
+ {
250
+ "epoch": 0.25,
251
+ "grad_norm": 0.04894911531750606,
252
+ "learning_rate": 0.00018638608532055634,
253
+ "loss": 0.714,
254
+ "step": 170
255
+ },
256
+ {
257
+ "epoch": 0.26,
258
+ "grad_norm": 0.04424627496496155,
259
+ "learning_rate": 0.00018505375198992857,
260
+ "loss": 0.7445,
261
+ "step": 175
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "grad_norm": 0.05064439962306937,
266
+ "learning_rate": 0.00018366446369132578,
267
+ "loss": 0.7502,
268
+ "step": 180
269
+ },
270
+ {
271
+ "epoch": 0.27,
272
+ "grad_norm": 0.05185726609274544,
273
+ "learning_rate": 0.00018221915074079762,
274
+ "loss": 0.7423,
275
+ "step": 185
276
+ },
277
+ {
278
+ "epoch": 0.28,
279
+ "grad_norm": 0.049634018260632524,
280
+ "learning_rate": 0.00018071878097046065,
281
+ "loss": 0.7853,
282
+ "step": 190
283
+ },
284
+ {
285
+ "epoch": 0.29,
286
+ "grad_norm": 0.03718521878894617,
287
+ "learning_rate": 0.00017916435908040413,
288
+ "loss": 0.7575,
289
+ "step": 195
290
+ },
291
+ {
292
+ "epoch": 0.3,
293
+ "grad_norm": 0.054866103106943676,
294
+ "learning_rate": 0.00017755692596590778,
295
+ "loss": 0.7604,
296
+ "step": 200
297
+ },
298
+ {
299
+ "epoch": 0.3,
300
+ "grad_norm": 0.040017034968621745,
301
+ "learning_rate": 0.00017589755802042186,
302
+ "loss": 0.7818,
303
+ "step": 205
304
+ },
305
+ {
306
+ "epoch": 0.31,
307
+ "grad_norm": 0.03964997679073274,
308
+ "learning_rate": 0.00017418736641477636,
309
+ "loss": 0.7464,
310
+ "step": 210
311
+ },
312
+ {
313
+ "epoch": 0.32,
314
+ "grad_norm": 0.051157610923925706,
315
+ "learning_rate": 0.0001724274963531022,
316
+ "loss": 0.7534,
317
+ "step": 215
318
+ },
319
+ {
320
+ "epoch": 0.33,
321
+ "grad_norm": 0.04692776206415383,
322
+ "learning_rate": 0.00017061912630596252,
323
+ "loss": 0.7862,
324
+ "step": 220
325
+ },
326
+ {
327
+ "epoch": 0.33,
328
+ "grad_norm": 0.04009778793971981,
329
+ "learning_rate": 0.00016876346722120747,
330
+ "loss": 0.7619,
331
+ "step": 225
332
+ },
333
+ {
334
+ "epoch": 0.34,
335
+ "grad_norm": 0.037858593687305236,
336
+ "learning_rate": 0.00016686176171308126,
337
+ "loss": 0.7822,
338
+ "step": 230
339
+ },
340
+ {
341
+ "epoch": 0.35,
342
+ "grad_norm": 0.03514517489146636,
343
+ "learning_rate": 0.0001649152832301241,
344
+ "loss": 0.7475,
345
+ "step": 235
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "grad_norm": 0.043964485334365984,
350
+ "learning_rate": 0.00016292533520242662,
351
+ "loss": 0.775,
352
+ "step": 240
353
+ },
354
+ {
355
+ "epoch": 0.36,
356
+ "grad_norm": 0.06121852032774167,
357
+ "learning_rate": 0.00016089325016880736,
358
+ "loss": 0.7501,
359
+ "step": 245
360
+ },
361
+ {
362
+ "epoch": 0.37,
363
+ "grad_norm": 0.050365919886299945,
364
+ "learning_rate": 0.0001588203888844982,
365
+ "loss": 0.7498,
366
+ "step": 250
367
+ },
368
+ {
369
+ "epoch": 0.38,
370
+ "grad_norm": 0.04601818654614394,
371
+ "learning_rate": 0.00015670813940993502,
372
+ "loss": 0.7942,
373
+ "step": 255
374
+ },
375
+ {
376
+ "epoch": 0.39,
377
+ "grad_norm": 0.049451503331748733,
378
+ "learning_rate": 0.00015455791618126404,
379
+ "loss": 0.7232,
380
+ "step": 260
381
+ },
382
+ {
383
+ "epoch": 0.39,
384
+ "grad_norm": 0.049704756401709786,
385
+ "learning_rate": 0.00015237115906318563,
386
+ "loss": 0.7474,
387
+ "step": 265
388
+ },
389
+ {
390
+ "epoch": 0.4,
391
+ "grad_norm": 0.043536870823896914,
392
+ "learning_rate": 0.0001501493323847707,
393
+ "loss": 0.7074,
394
+ "step": 270
395
+ },
396
+ {
397
+ "epoch": 0.41,
398
+ "grad_norm": 0.052592436248192806,
399
+ "learning_rate": 0.00014789392395889468,
400
+ "loss": 0.7675,
401
+ "step": 275
402
+ },
403
+ {
404
+ "epoch": 0.41,
405
+ "grad_norm": 0.04641887287230184,
406
+ "learning_rate": 0.00014560644408594602,
407
+ "loss": 0.7884,
408
+ "step": 280
409
+ },
410
+ {
411
+ "epoch": 0.42,
412
+ "grad_norm": 0.03778851947891411,
413
+ "learning_rate": 0.0001432884245424761,
414
+ "loss": 0.7364,
415
+ "step": 285
416
+ },
417
+ {
418
+ "epoch": 0.43,
419
+ "grad_norm": 0.04383653972641628,
420
+ "learning_rate": 0.00014094141755546815,
421
+ "loss": 0.7633,
422
+ "step": 290
423
+ },
424
+ {
425
+ "epoch": 0.44,
426
+ "grad_norm": 0.04958511831355967,
427
+ "learning_rate": 0.00013856699476291176,
428
+ "loss": 0.7254,
429
+ "step": 295
430
+ },
431
+ {
432
+ "epoch": 0.44,
433
+ "grad_norm": 0.047545677145208354,
434
+ "learning_rate": 0.000136166746161379,
435
+ "loss": 0.7389,
436
+ "step": 300
437
+ },
438
+ {
439
+ "epoch": 0.45,
440
+ "grad_norm": 0.049601892362158714,
441
+ "learning_rate": 0.00013374227904130724,
442
+ "loss": 0.7298,
443
+ "step": 305
444
+ },
445
+ {
446
+ "epoch": 0.46,
447
+ "grad_norm": 0.039019104385466755,
448
+ "learning_rate": 0.00013129521691070107,
449
+ "loss": 0.7372,
450
+ "step": 310
451
+ },
452
+ {
453
+ "epoch": 0.47,
454
+ "grad_norm": 0.04324309132836927,
455
+ "learning_rate": 0.00012882719840797473,
456
+ "loss": 0.7586,
457
+ "step": 315
458
+ },
459
+ {
460
+ "epoch": 0.47,
461
+ "grad_norm": 0.04511381039375704,
462
+ "learning_rate": 0.0001263398762046623,
463
+ "loss": 0.782,
464
+ "step": 320
465
+ },
466
+ {
467
+ "epoch": 0.48,
468
+ "grad_norm": 0.037065274891104005,
469
+ "learning_rate": 0.00012383491589873123,
470
+ "loss": 0.73,
471
+ "step": 325
472
+ },
473
+ {
474
+ "epoch": 0.49,
475
+ "grad_norm": 0.04379387246767109,
476
+ "learning_rate": 0.0001213139948992394,
477
+ "loss": 0.7602,
478
+ "step": 330
479
+ },
480
+ {
481
+ "epoch": 0.5,
482
+ "grad_norm": 0.04868933738312991,
483
+ "learning_rate": 0.0001187788013030837,
484
+ "loss": 0.7467,
485
+ "step": 335
486
+ },
487
+ {
488
+ "epoch": 0.5,
489
+ "grad_norm": 0.04841745199938846,
490
+ "learning_rate": 0.00011623103276459086,
491
+ "loss": 0.7862,
492
+ "step": 340
493
+ },
494
+ {
495
+ "epoch": 0.51,
496
+ "grad_norm": 0.046825753709491394,
497
+ "learning_rate": 0.00011367239535870913,
498
+ "loss": 0.7523,
499
+ "step": 345
500
+ },
501
+ {
502
+ "epoch": 0.52,
503
+ "grad_norm": 0.05204047537850423,
504
+ "learning_rate": 0.00011110460243856052,
505
+ "loss": 0.721,
506
+ "step": 350
507
+ },
508
+ {
509
+ "epoch": 0.53,
510
+ "grad_norm": 0.04835371095843328,
511
+ "learning_rate": 0.0001085293734881197,
512
+ "loss": 0.8165,
513
+ "step": 355
514
+ },
515
+ {
516
+ "epoch": 0.53,
517
+ "grad_norm": 0.046503091391954944,
518
+ "learning_rate": 0.00010594843297078737,
519
+ "loss": 0.7151,
520
+ "step": 360
521
+ },
522
+ {
523
+ "epoch": 0.54,
524
+ "grad_norm": 0.05401067419624875,
525
+ "learning_rate": 0.00010336350917462925,
526
+ "loss": 0.7623,
527
+ "step": 365
528
+ },
529
+ {
530
+ "epoch": 0.55,
531
+ "grad_norm": 0.046238914587313926,
532
+ "learning_rate": 0.00010077633305505403,
533
+ "loss": 0.7952,
534
+ "step": 370
535
+ },
536
+ {
537
+ "epoch": 0.56,
538
+ "grad_norm": 0.04067724976292184,
539
+ "learning_rate": 9.818863707570475e-05,
540
+ "loss": 0.7509,
541
+ "step": 375
542
+ },
543
+ {
544
+ "epoch": 0.56,
545
+ "grad_norm": 0.041537242387637924,
546
+ "learning_rate": 9.560215404834095e-05,
547
+ "loss": 0.7121,
548
+ "step": 380
549
+ },
550
+ {
551
+ "epoch": 0.57,
552
+ "grad_norm": 0.042556692843415594,
553
+ "learning_rate": 9.30186159724869e-05,
554
+ "loss": 0.7708,
555
+ "step": 385
556
+ },
557
+ {
558
+ "epoch": 0.58,
559
+ "grad_norm": 0.04846970178587132,
560
+ "learning_rate": 9.043975287562441e-05,
561
+ "loss": 0.7258,
562
+ "step": 390
563
+ },
564
+ {
565
+ "epoch": 0.59,
566
+ "grad_norm": 0.062274515472467,
567
+ "learning_rate": 8.786729165470584e-05,
568
+ "loss": 0.7698,
569
+ "step": 395
570
+ },
571
+ {
572
+ "epoch": 0.59,
573
+ "grad_norm": 0.05082087012341951,
574
+ "learning_rate": 8.530295491976337e-05,
575
+ "loss": 0.7717,
576
+ "step": 400
577
+ },
578
+ {
579
+ "epoch": 0.6,
580
+ "grad_norm": 0.04831882202604005,
581
+ "learning_rate": 8.274845984038916e-05,
582
+ "loss": 0.7679,
583
+ "step": 405
584
+ },
585
+ {
586
+ "epoch": 0.61,
587
+ "grad_norm": 0.051680028901517745,
588
+ "learning_rate": 8.020551699585842e-05,
589
+ "loss": 0.7265,
590
+ "step": 410
591
+ },
592
+ {
593
+ "epoch": 0.61,
594
+ "grad_norm": 0.051175873784970766,
595
+ "learning_rate": 7.76758292296659e-05,
596
+ "loss": 0.7696,
597
+ "step": 415
598
+ },
599
+ {
600
+ "epoch": 0.62,
601
+ "grad_norm": 0.06738625933727418,
602
+ "learning_rate": 7.516109050924201e-05,
603
+ "loss": 0.7781,
604
+ "step": 420
605
+ },
606
+ {
607
+ "epoch": 0.63,
608
+ "grad_norm": 0.05117489109997125,
609
+ "learning_rate": 7.266298479161318e-05,
610
+ "loss": 0.771,
611
+ "step": 425
612
+ },
613
+ {
614
+ "epoch": 0.64,
615
+ "grad_norm": 0.04211785915218291,
616
+ "learning_rate": 7.01831848957653e-05,
617
+ "loss": 0.7368,
618
+ "step": 430
619
+ },
620
+ {
621
+ "epoch": 0.64,
622
+ "grad_norm": 0.049459639807936356,
623
+ "learning_rate": 6.772335138246548e-05,
624
+ "loss": 0.7234,
625
+ "step": 435
626
+ },
627
+ {
628
+ "epoch": 0.65,
629
+ "grad_norm": 0.05981206570373218,
630
+ "learning_rate": 6.528513144229255e-05,
631
+ "loss": 0.7063,
632
+ "step": 440
633
+ },
634
+ {
635
+ "epoch": 0.66,
636
+ "grad_norm": 0.042858944283255956,
637
+ "learning_rate": 6.287015779262064e-05,
638
+ "loss": 0.7178,
639
+ "step": 445
640
+ },
641
+ {
642
+ "epoch": 0.67,
643
+ "grad_norm": 0.051605890455677136,
644
+ "learning_rate": 6.048004758429451e-05,
645
+ "loss": 0.8009,
646
+ "step": 450
647
+ },
648
+ {
649
+ "epoch": 0.67,
650
+ "grad_norm": 0.04839278716779415,
651
+ "learning_rate": 5.8116401318728667e-05,
652
+ "loss": 0.7969,
653
+ "step": 455
654
+ },
655
+ {
656
+ "epoch": 0.68,
657
+ "grad_norm": 0.053679686497026036,
658
+ "learning_rate": 5.578080177615575e-05,
659
+ "loss": 0.7744,
660
+ "step": 460
661
+ },
662
+ {
663
+ "epoch": 0.69,
664
+ "grad_norm": 0.04886589382975143,
665
+ "learning_rate": 5.3474812955741404e-05,
666
+ "loss": 0.782,
667
+ "step": 465
668
+ },
669
+ {
670
+ "epoch": 0.7,
671
+ "grad_norm": 0.05872104081042249,
672
+ "learning_rate": 5.119997902827584e-05,
673
+ "loss": 0.7684,
674
+ "step": 470
675
+ },
676
+ {
677
+ "epoch": 0.7,
678
+ "grad_norm": 0.04971188432483476,
679
+ "learning_rate": 4.895782330214291e-05,
680
+ "loss": 0.8219,
681
+ "step": 475
682
+ },
683
+ {
684
+ "epoch": 0.71,
685
+ "grad_norm": 0.05137448628344103,
686
+ "learning_rate": 4.674984720325961e-05,
687
+ "loss": 0.7654,
688
+ "step": 480
689
+ },
690
+ {
691
+ "epoch": 0.72,
692
+ "grad_norm": 0.04686654449943715,
693
+ "learning_rate": 4.4577529269668874e-05,
694
+ "loss": 0.7774,
695
+ "step": 485
696
+ },
697
+ {
698
+ "epoch": 0.73,
699
+ "grad_norm": 0.055295260668893974,
700
+ "learning_rate": 4.244232416145839e-05,
701
+ "loss": 0.7245,
702
+ "step": 490
703
+ },
704
+ {
705
+ "epoch": 0.73,
706
+ "grad_norm": 0.05389337215866635,
707
+ "learning_rate": 4.0345661686669745e-05,
708
+ "loss": 0.8061,
709
+ "step": 495
710
+ },
711
+ {
712
+ "epoch": 0.74,
713
+ "grad_norm": 0.05870235717745641,
714
+ "learning_rate": 3.828894584384867e-05,
715
+ "loss": 0.8031,
716
+ "step": 500
717
+ },
718
+ {
719
+ "epoch": 0.75,
720
+ "grad_norm": 0.05571889022670846,
721
+ "learning_rate": 3.62735538818787e-05,
722
+ "loss": 0.7614,
723
+ "step": 505
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "grad_norm": 0.04492834518434723,
728
+ "learning_rate": 3.43008353777269e-05,
729
+ "loss": 0.7331,
730
+ "step": 510
731
+ },
732
+ {
733
+ "epoch": 0.76,
734
+ "grad_norm": 0.05343462218042988,
735
+ "learning_rate": 3.237211133272004e-05,
736
+ "loss": 0.7355,
737
+ "step": 515
738
+ },
739
+ {
740
+ "epoch": 0.77,
741
+ "grad_norm": 0.047988801277496954,
742
+ "learning_rate": 3.0488673287955882e-05,
743
+ "loss": 0.7237,
744
+ "step": 520
745
+ },
746
+ {
747
+ "epoch": 0.78,
748
+ "grad_norm": 0.055886245680751935,
749
+ "learning_rate": 2.8651782459442176e-05,
750
+ "loss": 0.7426,
751
+ "step": 525
752
+ },
753
+ {
754
+ "epoch": 0.79,
755
+ "grad_norm": 0.04696112028105608,
756
+ "learning_rate": 2.686266889354211e-05,
757
+ "loss": 0.7487,
758
+ "step": 530
759
+ },
760
+ {
761
+ "epoch": 0.79,
762
+ "grad_norm": 0.04555764819319834,
763
+ "learning_rate": 2.5122530643292275e-05,
764
+ "loss": 0.7344,
765
+ "step": 535
766
+ },
767
+ {
768
+ "epoch": 0.8,
769
+ "grad_norm": 0.05199303289710418,
770
+ "learning_rate": 2.3432532966144527e-05,
771
+ "loss": 0.7604,
772
+ "step": 540
773
+ },
774
+ {
775
+ "epoch": 0.81,
776
+ "grad_norm": 0.05146492861699787,
777
+ "learning_rate": 2.1793807543668853e-05,
778
+ "loss": 0.7383,
779
+ "step": 545
780
+ },
781
+ {
782
+ "epoch": 0.81,
783
+ "grad_norm": 0.05548374949115557,
784
+ "learning_rate": 2.0207451723739633e-05,
785
+ "loss": 0.7565,
786
+ "step": 550
787
+ },
788
+ {
789
+ "epoch": 0.82,
790
+ "grad_norm": 0.04718878121287069,
791
+ "learning_rate": 1.8674527785713247e-05,
792
+ "loss": 0.7889,
793
+ "step": 555
794
+ },
795
+ {
796
+ "epoch": 0.83,
797
+ "grad_norm": 0.07223231382050395,
798
+ "learning_rate": 1.7196062229088604e-05,
799
+ "loss": 0.7734,
800
+ "step": 560
801
+ },
802
+ {
803
+ "epoch": 0.84,
804
+ "grad_norm": 0.051918878796507154,
805
+ "learning_rate": 1.577304508612717e-05,
806
+ "loss": 0.7697,
807
+ "step": 565
808
+ },
809
+ {
810
+ "epoch": 0.84,
811
+ "grad_norm": 0.05143371773283759,
812
+ "learning_rate": 1.4406429258892762e-05,
813
+ "loss": 0.7591,
814
+ "step": 570
815
+ },
816
+ {
817
+ "epoch": 0.85,
818
+ "grad_norm": 0.06242991163796485,
819
+ "learning_rate": 1.3097129881154934e-05,
820
+ "loss": 0.7888,
821
+ "step": 575
822
+ },
823
+ {
824
+ "epoch": 0.86,
825
+ "grad_norm": 0.05577486269105434,
826
+ "learning_rate": 1.1846023705583442e-05,
827
+ "loss": 0.7503,
828
+ "step": 580
829
+ },
830
+ {
831
+ "epoch": 0.87,
832
+ "grad_norm": 0.05386359623343792,
833
+ "learning_rate": 1.065394851664394e-05,
834
+ "loss": 0.7306,
835
+ "step": 585
836
+ },
837
+ {
838
+ "epoch": 0.87,
839
+ "grad_norm": 0.06740139242925512,
840
+ "learning_rate": 9.521702569588198e-06,
841
+ "loss": 0.7748,
842
+ "step": 590
843
+ },
844
+ {
845
+ "epoch": 0.88,
846
+ "grad_norm": 0.05952304608258396,
847
+ "learning_rate": 8.450044055914497e-06,
848
+ "loss": 0.6941,
849
+ "step": 595
850
+ },
851
+ {
852
+ "epoch": 0.89,
853
+ "grad_norm": 0.06052761239891292,
854
+ "learning_rate": 7.439690595656013e-06,
855
+ "loss": 0.7775,
856
+ "step": 600
857
+ },
858
+ {
859
+ "epoch": 0.9,
860
+ "grad_norm": 0.05646485799009386,
861
+ "learning_rate": 6.4913187568374164e-06,
862
+ "loss": 0.7941,
863
+ "step": 605
864
+ },
865
+ {
866
+ "epoch": 0.9,
867
+ "grad_norm": 0.051627777900137006,
868
+ "learning_rate": 5.605563602421149e-06,
869
+ "loss": 0.7621,
870
+ "step": 610
871
+ },
872
+ {
873
+ "epoch": 0.91,
874
+ "grad_norm": 0.05672370227304409,
875
+ "learning_rate": 4.783018265047179e-06,
876
+ "loss": 0.7598,
877
+ "step": 615
878
+ },
879
+ {
880
+ "epoch": 0.92,
881
+ "grad_norm": 0.04806888785096822,
882
+ "learning_rate": 4.024233549850509e-06,
883
+ "loss": 0.7585,
884
+ "step": 620
885
+ },
886
+ {
887
+ "epoch": 0.93,
888
+ "grad_norm": 0.054256686487143276,
889
+ "learning_rate": 3.329717565622825e-06,
890
+ "loss": 0.7766,
891
+ "step": 625
892
+ },
893
+ {
894
+ "epoch": 0.93,
895
+ "grad_norm": 0.04081148671596208,
896
+ "learning_rate": 2.699935384565111e-06,
897
+ "loss": 0.7324,
898
+ "step": 630
899
+ },
900
+ {
901
+ "epoch": 0.94,
902
+ "grad_norm": 0.052421185625722275,
903
+ "learning_rate": 2.1353087308590314e-06,
904
+ "loss": 0.7933,
905
+ "step": 635
906
+ },
907
+ {
908
+ "epoch": 0.95,
909
+ "grad_norm": 0.05392813215656955,
910
+ "learning_rate": 1.6362156982656084e-06,
911
+ "loss": 0.7896,
912
+ "step": 640
913
+ },
914
+ {
915
+ "epoch": 0.96,
916
+ "grad_norm": 0.052109378844003566,
917
+ "learning_rate": 1.2029904969404482e-06,
918
+ "loss": 0.7633,
919
+ "step": 645
920
+ },
921
+ {
922
+ "epoch": 0.96,
923
+ "grad_norm": 0.05562712893622207,
924
+ "learning_rate": 8.359232296349162e-07,
925
+ "loss": 0.7664,
926
+ "step": 650
927
+ },
928
+ {
929
+ "epoch": 0.97,
930
+ "grad_norm": 0.05328976304172556,
931
+ "learning_rate": 5.352596974332436e-07,
932
+ "loss": 0.7658,
933
+ "step": 655
934
+ },
935
+ {
936
+ "epoch": 0.98,
937
+ "grad_norm": 0.05351883682294467,
938
+ "learning_rate": 3.0120123515540164e-07,
939
+ "loss": 0.7871,
940
+ "step": 660
941
+ },
942
+ {
943
+ "epoch": 0.99,
944
+ "grad_norm": 0.05900811011725127,
945
+ "learning_rate": 1.3390457653639222e-07,
946
+ "loss": 0.7749,
947
+ "step": 665
948
+ },
949
+ {
950
+ "epoch": 0.99,
951
+ "grad_norm": 0.06175235611664889,
952
+ "learning_rate": 3.3481749271768726e-08,
953
+ "loss": 0.7353,
954
+ "step": 670
955
+ },
956
+ {
957
+ "epoch": 1.0,
958
+ "grad_norm": 0.05208882374001457,
959
+ "learning_rate": 0.0,
960
+ "loss": 0.7591,
961
+ "step": 675
962
+ },
963
+ {
964
+ "epoch": 1.0,
965
+ "eval_loss": NaN,
966
+ "eval_runtime": 2998.9455,
967
+ "eval_samples_per_second": 0.77,
968
+ "eval_steps_per_second": 0.193,
969
+ "step": 675
970
+ },
971
+ {
972
+ "epoch": 1.0,
973
+ "step": 675,
974
+ "total_flos": 2.235287773328179e+16,
975
+ "train_loss": 0.7647893634548893,
976
+ "train_runtime": 21987.6737,
977
+ "train_samples_per_second": 0.982,
978
+ "train_steps_per_second": 0.031
979
+ }
980
+ ],
981
+ "logging_steps": 5,
982
+ "max_steps": 675,
983
+ "num_input_tokens_seen": 0,
984
+ "num_train_epochs": 1,
985
+ "save_steps": 100,
986
+ "total_flos": 2.235287773328179e+16,
987
+ "train_batch_size": 4,
988
+ "trial_name": null,
989
+ "trial_params": null
990
+ }