ppo-LunarLander-v2 / config.json
jyeung's picture
Upload PPO LunarLander-v2 trained agent
bbae68d verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783e398fa050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783e398fa0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783e398fa170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783e398fa200>", "_build": "<function ActorCriticPolicy._build at 0x783e398fa290>", "forward": "<function ActorCriticPolicy.forward at 0x783e398fa320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783e398fa3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783e398fa440>", "_predict": "<function ActorCriticPolicy._predict at 0x783e398fa4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783e398fa560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783e398fa5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783e398fa680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783e398a17c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719448879628261563, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOOnxr5j+Uo/pg2NuwPJA79qoKW+OBGOPQAAAAAAAAAAAD3lPXg03D7yLkW+mpfEvm4abbxErQo9AAAAAAAAAAAAPDs8Wz+fP3U17Dw9Wd++xNOBPcszbj0AAAAAAAAAAIqFBD/HqTm+0MBhO1IN/bl9BVW+FkGEugAAAAAAAAAAayedvnPF0j6byX8+h+TWvkQvgL66Amk+AAAAAAAAAAAg3Cq+COmsPlYoUz6+0o++RvqXvVY66D0AAAAAAAAAAAAQxT0bTY09X2ytvcN/zr7m4IG9zWKPPAAAAAAAAAAAelmmvgZtST+ezlq+QSEVv08PsL5MQos9AAAAAAAAAADAkRA+V7gBP/ERKL6j/Ja+r2CxO6lFDz0AAAAAAAAAAA2qlD3sOfi5IPZhNy3T4DLKjMo4OlqFtgAAgD8AAIA/Zsh2vKDhvz/EVgK+V/o4Pnk7dTwwGts8AAAAAAAAAACaSpg9zq+PvIeJI7p9JhC6SKH9PdXhgboAAIA/AACAP+bylT3OZq68NB2XPEPP6jxvPRy+WK2zPQAAgD8AAIA/MxIdPRTEu7r3PBE8Gu6PPDFWzLtTFHk9AACAPwAAgD+ajZG9N3i9P2XU2r69Eps8smNBvZBscb4AAAAAAAAAAPOsy71QqEQ/x0KuvEHi576K8ha98/T6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFGu+7Dl5qMAWyUS++MAXSUR0CTcAJ2t+1CdX2UKGgGR0ByTT8WKuSwaAdNGgFoCEdAk3ATg/C66XV9lChoBkdAcn9jzqbBoGgHTUYBaAhHQJNwQkhRqGl1fZQoaAZHQHAJiEHt4RpoB0v4aAhHQJNxRz8xbjd1fZQoaAZHQHCB4nfEXLxoB0v8aAhHQJNzkSdvsJJ1fZQoaAZHQHKneuA7PppoB00ZAWgIR0CTdAhsZYPodX2UKGgGR0BvjL4N7SiNaAdNIwFoCEdAk3Sxm9QGfXV9lChoBkdAcZ5UQTVUdmgHTZMBaAhHQJN2DVsk6cR1fZQoaAZHQHCLLVJ+UhVoB00uAWgIR0CTdt5UcXFcdX2UKGgGR0BxHHQ/oq0/aAdNSQFoCEdAk3cOavzOHHV9lChoBkdAcHTVjZtelmgHTSYBaAhHQJN3RPwd8zB1fZQoaAZHQHMbBri2lVNoB00MAWgIR0CTeOUqQRwqdX2UKGgGR0Bx+vGYKIBSaAdNGQFoCEdAk3ke/Yao/HV9lChoBkdAcM4jrzGxU2gHTVcBaAhHQJN53rleWv91fZQoaAZHQHGIwf+0gKZoB003AWgIR0CTefvXbuc+dX2UKGgGR0BsctjVhCtzaAdN1QFoCEdAk3ozF2mpEXV9lChoBkdAbsoNZvDP4WgHTYcBaAhHQJN6eSowVTJ1fZQoaAZHQG7y6Yu01IloB01MAWgIR0CTermlqJuVdX2UKGgGR0Bvagi3XqZ/aAdNlQFoCEdAk3uBnWattHV9lChoBkdAbbLjjrAxjGgHTQQBaAhHQJN8mMZP2wp1fZQoaAZHQHCVcQ7LdN5oB00iAWgIR0CTfRqbz9S/dX2UKGgGR0BxwtRdhRZVaAdNbgFoCEdAk30W6f8Mu3V9lChoBkdAckFLBsQ/YGgHTSYBaAhHQJN+D9If8uV1fZQoaAZHQHGe4mois4loB00oAWgIR0CTf0RUFSsKdX2UKGgGR0BsrBqIrOJMaAdNJQFoCEdAk3/mAskIHHV9lChoBkdAcM0Ux20Re2gHS+1oCEdAk4AUmQbMo3V9lChoBkdAb55oIOYplWgHTREBaAhHQJOBFllK9PF1fZQoaAZHQG4KQBPsRg9oB01MAWgIR0CTgZEVnEl3dX2UKGgGR0BssMsrd30PaAdNYAFoCEdAk4IAPVd5ZHV9lChoBkdAca98OCoS+WgHTTIBaAhHQJOC+tmtheB1fZQoaAZHQHD4jMzMzM1oB00wAWgIR0CTg4Oe8PFvdX2UKGgGR0BxL6HCXQdCaAdL52gIR0CTg73cpLEldX2UKGgGR0BxNQLfDUExaAdNNQFoCEdAk4P8XBP9DXV9lChoBkdAcVPnUUfxMGgHTSQBaAhHQJOEavGIbfh1fZQoaAZHQHEGB2OhkAhoB02KAWgIR0CThe/ustCidX2UKGgGR0ByOaY9gWrPaAdNHwFoCEdAk4Yczl90BHV9lChoBkdAcZPIxgy/K2gHS+9oCEdAk4byW/rSmnV9lChoBkdAcOZOSW7e22gHTTwBaAhHQJOG/MMZxaR1fZQoaAZHQHBfK5kK/mFoB00jAWgIR0CTh0iaRZEEdX2UKGgGR0BxpjDcdo38aAdL5GgIR0CTh1W3z+WGdX2UKGgGR0ByOqdNFjNIaAdNFwFoCEdAk4iYrSVnmXV9lChoBkdAbr+EFGG21GgHS/toCEdAk4lRVuJk5XV9lChoBkdAcFOxx1gYxmgHS/toCEdAk4m+DSPU8XV9lChoBkdAZQCwJw84gmgHTRECaAhHQJOeQ56t1ZF1fZQoaAZHQHE1SCrcTJ1oB0v9aAhHQJOfXRCx/ut1fZQoaAZHQHEUg6Mir1doB0v1aAhHQJOfkN3GGVR1fZQoaAZHQG9F/LcKw6hoB0vYaAhHQJOghCswL3N1fZQoaAZHQG7ttFz+3phoB00eAWgIR0CToJgFotcwdX2UKGgGR0BxSVCXyAhCaAdNcQFoCEdAk6Ck2pAD73V9lChoBkdAa9h4vexfOWgHTRQBaAhHQJOg7CHh0hh1fZQoaAZHQHBrSeRPoFFoB01yAWgIR0CTolzoEB8ydX2UKGgGR0BxBZmVZ9uxaAdL9mgIR0CTomzVMEiddX2UKGgGR0BxalpBX0XhaAdNHgFoCEdAk6K0r5IpY3V9lChoBkdAcCBwPRRdhWgHS+9oCEdAk6SeVX3g1nV9lChoBkdAbxq5ksjFAGgHTUIBaAhHQJOkpvIfbK11fZQoaAZHQHEY1g+hXbNoB01CAWgIR0CTpscbzbvgdX2UKGgGR0BxTYBDG96DaAdL9WgIR0CTp0rzXjEOdX2UKGgGR0BwYailBQenaAdNJQFoCEdAk6dwMYuTR3V9lChoBkdAciVtkWhysGgHTTUBaAhHQJOnmE6DGtJ1fZQoaAZHQHEblefI0ZZoB0vhaAhHQJOnvwWnCO51fZQoaAZHQGvEYsNDtw9oB0v0aAhHQJOoX73wkPd1fZQoaAZHQG/gqp1ie/ZoB02yAWgIR0CTqN0waisXdX2UKGgGR0BzJG04R28qaAdNKAFoCEdAk6nnTiKiwnV9lChoBkdAcSBBshxHXmgHTRUBaAhHQJOrYNEw35x1fZQoaAZHQHEULgGbCrNoB015AWgIR0CTq16vJRwZdX2UKGgGR0BugF5IH1OCaAdNDAFoCEdAk6t/aYeDF3V9lChoBkdAb+fTP0I1L2gHTRoBaAhHQJOrmfNA1Nx1fZQoaAZHQHNVnLzPKMhoB0vkaAhHQJOsIntv4ud1fZQoaAZHQFU7vuw5eZ5oB0vkaAhHQJOsKIwdsBR1fZQoaAZHQD6FRNyo4uNoB0u6aAhHQJOtRJK8L8d1fZQoaAZHQHG6Mh1Tzd1oB01FAmgIR0CTrWEaESM+dX2UKGgGR0BuYBF3IMjNaAdNoAFoCEdAk63SRGMGYHV9lChoBkdAc037z06HTWgHS/toCEdAk65Ww7kn1HV9lChoBkdAcMxb/Ot4iWgHTRoBaAhHQJOwqVnmJWN1fZQoaAZHQHFq71qWTotoB00vAWgIR0CTsK7W/ag3dX2UKGgGR0BwcmlWOp84aAdNUQFoCEdAk7FbXHzYmXV9lChoBkdAbp28JUo8ZGgHTQMBaAhHQJOxevUz9CN1fZQoaAZHQHD4hClabF1oB01eAWgIR0CTsdrWy1NQdX2UKGgGR0ByArn8sMAnaAdL7mgIR0CTsjujRD1HdX2UKGgGR0Bw1ws+V1OkaAdNSwFoCEdAk7KZF5OafHV9lChoBkdAcGtizLOiWWgHTQEBaAhHQJOyqiXY1511fZQoaAZHQHE90m+j/MpoB00YAWgIR0CTs3Ktga3rdX2UKGgGR0AYg/5ckdFOaAdLx2gIR0CTs3huO0b+dX2UKGgGR0Bx/Lt+kP+XaAdNMgFoCEdAk7PpMcp9Z3V9lChoBkdAcGjfqHGjsWgHTQIBaAhHQJO0lMmF8G91fZQoaAZHQHEvQwoLG71oB00zAWgIR0CTtLAZbY9QdX2UKGgGR0A6wQOFxn3+aAdLiWgIR0CTteW6shgWdX2UKGgGR0Bt8zkELYwqaAdNDwFoCEdAk7X8ZP2wmnV9lChoBkdAcLFct5D7ZWgHTTsBaAhHQJO2Da0x/NJ1fZQoaAZHQHE8gv114gRoB0vuaAhHQJO3QwztTk11fZQoaAZHQHHKS704BFNoB0vvaAhHQJO4flS0jTt1fZQoaAZHQHIeQHzH0btoB00CAWgIR0CTuK9ETg2qdX2UKGgGR0Bv7O+/QBxQaAdNDAFoCEdAk7jec+aBqnV9lChoBkdAb5UbNr0rb2gHS+doCEdAk7oh4dIXj3V9lChoBkdATetCgK4QSWgHS+toCEdAk7pKXjU/fXV9lChoBkdAcAkQiA2AG2gHTR4BaAhHQJO64DfWMCN1fZQoaAZHQHEAVkc0cfhoB01hAWgIR0CTuvVi4J/odX2UKGgGR0BzZFHy3CsPaAdNQwFoCEdAk7wN52QnyHV9lChoBkdAcXyv+OwPiGgHTRkBaAhHQJO8QA7xNIt1fZQoaAZHQG9U5vLowEhoB00DAWgIR0CTvFmLLpzLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}