--- library_name: transformers license: apache-2.0 base_model: d4data/biomedical-ner-all tags: - generated_from_trainer metrics: - accuracy model-index: - name: ner-biomedical-maccrobat2018 results: [] --- # ner-biomedical-maccrobat2018 This model is a fine-tuned version of [d4data/biomedical-ner-all](https://huggingface.co/d4data/biomedical-ner-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5565 - Accuracy: 0.7909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.641 | 1.0 | 10 | 1.5081 | 0.3577 | | 1.338 | 2.0 | 20 | 0.9042 | 0.6165 | | 0.877 | 3.0 | 30 | 0.6942 | 0.7081 | | 0.6363 | 4.0 | 40 | 0.5950 | 0.7520 | | 0.4868 | 5.0 | 50 | 0.5515 | 0.7573 | | 0.3798 | 6.0 | 60 | 0.5296 | 0.7688 | | 0.3047 | 7.0 | 70 | 0.5217 | 0.7825 | | 0.2521 | 8.0 | 80 | 0.5290 | 0.7788 | | 0.2123 | 9.0 | 90 | 0.5283 | 0.7852 | | 0.1819 | 10.0 | 100 | 0.5309 | 0.7880 | | 0.1585 | 11.0 | 110 | 0.5345 | 0.7835 | | 0.1388 | 12.0 | 120 | 0.5430 | 0.7823 | | 0.1235 | 13.0 | 130 | 0.5350 | 0.7871 | | 0.1128 | 14.0 | 140 | 0.5406 | 0.7882 | | 0.1036 | 15.0 | 150 | 0.5561 | 0.7873 | | 0.0985 | 16.0 | 160 | 0.5603 | 0.7887 | | 0.0924 | 17.0 | 170 | 0.5559 | 0.7894 | | 0.0883 | 18.0 | 180 | 0.5575 | 0.7909 | | 0.0832 | 19.0 | 190 | 0.5545 | 0.7910 | | 0.0843 | 20.0 | 200 | 0.5565 | 0.7909 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0