thearod5 commited on
Commit
86ac494
·
verified ·
1 Parent(s): 24c764d

Adding paper details to model card

Browse files
Files changed (1) hide show
  1. README.md +39 -126
README.md CHANGED
@@ -1,37 +1,32 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -67,133 +62,51 @@ This is the model card of a 🤗 transformers model that has been pushed on the
67
 
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags: [software engineering, software traceability]
4
  ---
5
 
6
+ # Model Card for nl-bert
 
 
 
7
 
8
+ Provides TAPT (Task Adaptive Pretraining) model from "Enhancing Automated Software Traceability by
9
+ Transfer Learning from Open-World Data".
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
+ This model was trained to predict trace links between issue and commits on GitHub data from 2016-21.
16
 
 
17
 
18
+ - **Developed by:** Jinfeng Lin, University of Notre Dame
19
+ - **Shared by [optional]:** Alberto Rodriguez, University of Notre Dame
20
+ - **Model type:** BertForSequenceClassification
21
+ - **Language(s) (NLP):** EN
22
+ - **License:** MIT
 
 
23
 
24
  ### Model Sources [optional]
25
 
26
  <!-- Provide the basic links for the model. -->
27
 
28
+ - **Repository:** https://github.com/thearod5/se-models
29
+ - **Paper:** https://arxiv.org/abs/2207.01084
 
30
 
31
  ## Uses
32
 
 
62
 
63
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
64
 
 
 
 
 
 
65
 
66
  ## Training Details
67
+ Please see cite paper for full training details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Evaluation
70
 
71
+ Please see cited paper for full evaluation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ### Results
74
 
75
+ The model achieved a MAP score improvement of over 20% compared to baseline models. See cited paper for full details.
 
 
 
 
 
 
 
 
 
 
76
 
77
  ## Environmental Impact
78
 
79
+ - **Hardware Type:** Distributed machine pool
80
+ - **Hours used:** 72 hours
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
+ # Technical Specifications [optional]
83
+ # Model Architecture and Objective
84
+ The model uses a Single-BERT architecture from the TBERT framework, which performs well on traceability tasks by encoding concatenated source and target artifacts.
85
 
86
+ # Compute Infrastructure
87
+ Hardware
88
+ 300 servers in a distributed machine pool
89
 
90
+ # Software
91
+ - Transformers library
92
+ - PyTorch
93
+ - HTCondor for distributed computation
94
 
95
+ ## Citation
96
 
97
  **BibTeX:**
98
 
99
+ @misc{lin2022enhancing,
100
+ title={Enhancing Automated Software Traceability by Transfer Learning from Open-World Data},
101
+ author={Jinfeng Lin and Amrit Poudel and Wenhao Yu and Qingkai Zeng and Meng Jiang and Jane Cleland-Huang},
102
+ year={2022},
103
+ eprint={2207.01084},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.SE}
106
+ }
107
 
108
+ ## Model Card Authors
109
+ Alberto Rodriguez
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  ## Model Card Contact
112
+ Alberto Rodriguez ([email protected])