File size: 1,845 Bytes
ffef5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-korean-s4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-korean-s4

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0378
- Cer: 0.0048

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 0.37  | 300  | 4.6810          | 1.0    |
| 5.541         | 0.74  | 600  | 3.2272          | 1.0    |
| 5.541         | 1.12  | 900  | 2.9931          | 0.9389 |
| 2.8308        | 1.49  | 1200 | 0.3785          | 0.0922 |
| 0.4651        | 1.86  | 1500 | 0.1628          | 0.0385 |
| 0.4651        | 2.23  | 1800 | 0.0769          | 0.0139 |
| 0.1628        | 2.6   | 2100 | 0.0475          | 0.0069 |
| 0.1628        | 2.97  | 2400 | 0.0378          | 0.0048 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1