# NSE LSTM Model Usage Example import tensorflow as tf import pickle import numpy as np import pandas as pd def load_model(): """Load the trained NSE LSTM model and scaler""" model = tf.keras.models.load_model("nse_lstm_model.keras") with open("nse_lstm_scaler.pkl", "rb") as f: scaler = pickle.load(f) return model, scaler def prepare_features(data): """Prepare features for prediction""" # This is a simplified example - you'll need to implement # the same feature engineering used during training features = [] for i in range(len(data) - 4): # 5-day window window = data[i:i+5] # Calculate your 25 features here # For now, using dummy data feature_vector = np.random.randn(25) features.append(feature_vector) return np.array(features).reshape(-1, 5, 25) def predict_stock_price(symbol_data): """Predict next day's stock price""" model, scaler = load_model() # Prepare features features = prepare_features(symbol_data) # Make prediction prediction = model.predict(features) return prediction # Example usage if __name__ == "__main__": # Load your stock data here # data = pd.read_csv("your_stock_data.csv") # For demonstration, using random data dummy_data = np.random.randn(100, 5) # 100 days, 5 features prediction = predict_stock_price(dummy_data) print(f"Predicted price change: {prediction[0][0]}")