--- tags: - model_hub_mixin - pytorch_model_hub_mixin license: apache-2.0 language: - en metrics: - accuracy base_model: - microsoft/wavlm-large datasets: - ajd12342/paraspeechcaps pipeline_tag: audio-classification --- # WavLM-Large for Voice (Sounding) Quality Classification # Model Description This model includes the implementation of voice quality classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648) ### Metric: Specifically, we report speaker-level Macro-F1 scores. Specifically, we randomly sampled five utterances for each speaker and repeated this stratification process 20 times. The speaker-level score is computed as the average Macro-F1 across speakers. **We then report the unweighted average of speaker-level Macro-F1 scores between VoxCeleb and Expresso.** ### Special Note: We exclude EARS from ParaSpeechCaps due to its limited number of samples in the holdout set. The included labels are:
[ 'shrill', 'nasal', 'deep', # Pitch 'silky', 'husky', 'raspy', 'guttural', 'vocal-fry', # Texture 'booming', 'authoritative', 'loud', 'hushed', 'soft', # Volume 'crisp', 'slurred', 'lisp', 'stammering', # Clarity 'singsong', 'pitchy', 'flowing', 'monotone', 'staccato', 'punctuated', 'enunciated', 'hesitant', # Rhythm ]- Library: https://github.com/tiantiaf0627/vox-profile-release # How to use this model ## Download repo ```bash git clone git@github.com:tiantiaf0627/vox-profile-release.git ``` ## Install the package ```bash conda create -n vox_profile python=3.8 cd vox-profile-release pip install -e . ``` ## Load the model ```python # Load libraries import torch import torch.nn.functional as F from src.model.voice_quality.wavlm_voice_quality import WavLMWrapper # Find device device = torch.device("cuda") if torch.cuda.is_available() else "cpu" # Load model from Huggingface model = WavLMWrapper.from_pretrained("tiantiaf/wavlm-large-voice-quality").to(device) model.eval() ``` ## Prediction ```python # Label List voice_quality_label_list = [ 'shrill', 'nasal', 'deep', # Pitch 'silky', 'husky', 'raspy', 'guttural', 'vocal-fry', # Texture 'booming', 'authoritative', 'loud', 'hushed', 'soft', # Volume 'crisp', 'slurred', 'lisp', 'stammering', # Clarity 'singsong', 'pitchy', 'flowing', 'monotone', 'staccato', 'punctuated', 'enunciated', 'hesitant', # Rhythm ] # Load data, here just zeros as the example # Our training data filters output audio shorter than 3 seconds (unreliable predictions) and longer than 15 seconds (computation limitation) # So you need to prepare your audio to a maximum of 15 seconds, 16kHz, and mono channel max_audio_length = 15 * 16000 data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length] logits = model( data, return_feature=False ) # Probability and output voice_quality_prob = nn.Sigmoid()(torch.tensor(logits)) # In practice, a larger threshold would remove some noise, but it is best to aggregate predictions per speaker voice_label = list() threshold = 0.7 predictions = (voice_quality_prob > threshold).int().detach().cpu().numpy()[0].tolist() for label_idx in range(len(predictions)): if predictions[label_idx] == 1: voice_label.append(voice_quality_label_list[label_idx]) # print the voice quality labels print(voice_label) ``` ## If you have any questions, please contact: Tiantian Feng (tiantiaf@usc.edu) ## Kindly cite our paper if you are using our model or find it useful in your work ``` @article{feng2025vox, title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits}, author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others}, journal={arXiv preprint arXiv:2505.14648}, year={2025} } ```