File size: 3,377 Bytes
0b29812
 
 
 
bf2395d
5d5194e
8db0ea8
 
 
 
 
 
 
0b29812
8db0ea8
 
 
 
 
5c04ab5
 
d076531
 
8db0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b29812
 
44d6db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae5f7ec
44d6db4
 
 
 
 
 
 
 
 
 
 
 
ae5f7ec
44d6db4
 
 
 
 
 
 
 
 
 
 
 
 
c2d8e50
 
 
 
 
8eccc91
44d6db4
 
 
 
 
 
f5f7fec
 
117d3ba
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
- speech_emotion_recognition
license: bsd-2-clause
language:
- en
metrics:
- accuracy
base_model:
- openai/whisper-large-v3
pipeline_tag: audio-classification
---
# Whisper-Large V3 for Categorical Emotion Classification

# Model Description
This model includes the implementation of categorical emotion classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)

The training pipeline used is also the top-performing solution (SAILER) in INTERSPEECH 2025—Speech Emotion Challenge (https://lab-msp.com/MSP-Podcast_Competition/IS2025/). 
Note that we did not use all the augmentation and did not use the transcript compared to our official challenge submission system, but we created a speech-only system to make the model simple but still effective.

We use the MSP-Podcast data to train this model, noting that the model might be sensitive to content information when making emotion predictions. However, this could be a good feature for classifying emotions from online content.


The included emotions are: 
<pre>
[
    'Anger', 
    'Contempt', 
    'Disgust', 
    'Fear', 
    'Happiness', 
    'Neutral', 
    'Sadness', 
    'Surprise', 
    'Other'
]
</pre>

- Library: https://github.com/tiantiaf0627/vox-profile-release

# How to use this model

## Download repo
```
git clone [email protected]:tiantiaf0627/vox-profile-release.git
```
## Install the package
```
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
```

## Load the model
```python
# Load libraries
import torch
import torch.nn.functional as F
from src.model.emotion.whisper_emotion import WhisperWrapper
# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# Load model from Huggingface
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-msp-podcast-emotion").to(device)
model.eval()
```

## Prediction
```python
# Label List
emotion_label_list = [
    'Anger', 
    'Contempt', 
    'Disgust', 
    'Fear', 
    'Happiness', 
    'Neutral', 
    'Sadness', 
    'Surprise', 
    'Other'
]
    
# Load data, here just zeros as the example
# Our training data filters output audio shorter than 3 seconds (unreliable predictions) and longer than 15 seconds (computation limitation)
# So you need to prepare your audio to a maximum of 15 seconds, 16kHz and mono channel
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embedding, _, _, _, _ = model(
    data, return_feature=True
)
    
# Probability and output
emotion_prob = F.softmax(logits, dim=1)
print(emotion_label_list[torch.argmax(emotion_prob).detach().cpu().item()])
```

## If you have any questions, please contact: Tiantian Feng ([email protected])

## Kindly cite our paper if you are using our model or find it useful in your work
```
@article{feng2025vox,
  title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
  author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
  journal={arXiv preprint arXiv:2505.14648},
  year={2025}
}
```