File size: 3,377 Bytes
0b29812 bf2395d 5d5194e 8db0ea8 0b29812 8db0ea8 5c04ab5 d076531 8db0ea8 0b29812 44d6db4 ae5f7ec 44d6db4 ae5f7ec 44d6db4 c2d8e50 8eccc91 44d6db4 f5f7fec 117d3ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
- speech_emotion_recognition
license: bsd-2-clause
language:
- en
metrics:
- accuracy
base_model:
- openai/whisper-large-v3
pipeline_tag: audio-classification
---
# Whisper-Large V3 for Categorical Emotion Classification
# Model Description
This model includes the implementation of categorical emotion classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)
The training pipeline used is also the top-performing solution (SAILER) in INTERSPEECH 2025—Speech Emotion Challenge (https://lab-msp.com/MSP-Podcast_Competition/IS2025/).
Note that we did not use all the augmentation and did not use the transcript compared to our official challenge submission system, but we created a speech-only system to make the model simple but still effective.
We use the MSP-Podcast data to train this model, noting that the model might be sensitive to content information when making emotion predictions. However, this could be a good feature for classifying emotions from online content.
The included emotions are:
<pre>
[
'Anger',
'Contempt',
'Disgust',
'Fear',
'Happiness',
'Neutral',
'Sadness',
'Surprise',
'Other'
]
</pre>
- Library: https://github.com/tiantiaf0627/vox-profile-release
# How to use this model
## Download repo
```
git clone [email protected]:tiantiaf0627/vox-profile-release.git
```
## Install the package
```
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
```
## Load the model
```python
# Load libraries
import torch
import torch.nn.functional as F
from src.model.emotion.whisper_emotion import WhisperWrapper
# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# Load model from Huggingface
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-msp-podcast-emotion").to(device)
model.eval()
```
## Prediction
```python
# Label List
emotion_label_list = [
'Anger',
'Contempt',
'Disgust',
'Fear',
'Happiness',
'Neutral',
'Sadness',
'Surprise',
'Other'
]
# Load data, here just zeros as the example
# Our training data filters output audio shorter than 3 seconds (unreliable predictions) and longer than 15 seconds (computation limitation)
# So you need to prepare your audio to a maximum of 15 seconds, 16kHz and mono channel
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embedding, _, _, _, _ = model(
data, return_feature=True
)
# Probability and output
emotion_prob = F.softmax(logits, dim=1)
print(emotion_label_list[torch.argmax(emotion_prob).detach().cpu().item()])
```
## If you have any questions, please contact: Tiantian Feng ([email protected])
## Kindly cite our paper if you are using our model or find it useful in your work
```
@article{feng2025vox,
title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
journal={arXiv preprint arXiv:2505.14648},
year={2025}
}
``` |