ybelkada commited on
Commit
c83ff7e
·
verified ·
1 Parent(s): 4d0b401

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - falcon-h1
5
+ license: other
6
+ license_name: falcon-llm-license
7
+ license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
8
+ ---
9
+
10
+ # Table of Contents
11
+
12
+ 0. [TL;DR](#TL;DR)
13
+ 1. [Model Details](#model-details)
14
+ 2. [Training Details](#training-details)
15
+ 3. [Usage](#usage)
16
+ 4. [Evaluation](#evaluation)
17
+ 5. [Citation](#citation)
18
+
19
+ # TL;DR
20
+
21
+ # Model Details
22
+
23
+ ## Model Description
24
+
25
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae)
26
+ - **Model type:** Causal decoder-only
27
+ - **Architecture:** Hybrid Transformers + Mamba architecture
28
+ - **Language(s) (NLP):** English, Multilingual
29
+ - **License:** Falcon-LLM License
30
+
31
+ # Training details
32
+
33
+ For more details about the training protocol of this model, please refer to the [Falcon-H1 technical blogpost](https://falcon-lm.github.io/blog/falcon-h1/).
34
+
35
+ # Usage
36
+
37
+ Currently to use this model you can either rely on Hugging Face `transformers`, `vLLM` or our custom fork of `llama.cpp` library.
38
+
39
+ ## Inference
40
+
41
+ Make sure to install the latest version of `transformers` or `vllm`, eventually install these packages from source:
42
+
43
+ ```bash
44
+ pip install git+https://github.com/huggingface/transformers.git
45
+ ```
46
+
47
+ Refer to [the official vLLM documentation for more details on building vLLM from source](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#build-wheel-from-source).
48
+
49
+ ### 🤗 transformers
50
+
51
+ Refer to the snippet below to run H1 models using 🤗 transformers:
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+
57
+ model_id = "tiiuae/Falcon-H1-1B-Base"
58
+
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ model_id,
61
+ torch_dtype=torch.bfloat16,
62
+ device_map="auto"
63
+ )
64
+
65
+ # Perform text generation
66
+ ```
67
+
68
+ ### vLLM
69
+
70
+ For vLLM, simply start a server by executing the command below:
71
+
72
+ ```
73
+ # pip install vllm
74
+ vllm serve tiiuae/Falcon-H1-1B-Instruct --tensor-parallel-size 2 --data-parallel-size 1
75
+ ```
76
+
77
+ ### `llama.cpp`
78
+
79
+ While we are working on integrating our architecture directly into `llama.cpp` library, you can install our fork of the library and use it directly: https://github.com/tiiuae/llama.cpp-Falcon-H1
80
+ Use the same installing guidelines as `llama.cpp`.
81
+
82
+ # Evaluation
83
+
84
+ Falcon-H1 series perform very well on a variety of tasks, including reasoning tasks.
85
+
86
+ | Tasks | Falcon-H1-1.5B | Qwen3-1.7B | Qwen2.5-1.5B | Gemma3-1B | Llama3.2-1B | Falcon3-1B |
87
+ | --- | --- | --- | --- | --- | --- | --- |
88
+ | **General** | | | | | |
89
+ | BBH | **46.47** | 35.18 | 42.41 | 35.86 | 33.21 | 34.47 |
90
+ | ARC-C | 42.06 | 34.81 | 40.53 | 34.13 | 34.64 | **43.09** |
91
+ | TruthfulQA | 45.98 | **49.39** | 47.05 | 42.17 | 42.08 | 42.31 |
92
+ | HellaSwag | **63.33** | 49.27 | 62.23 | 42.24 | 55.3 | 58.53 |
93
+ | MMLU | **62.03** | 57.04 | 59.76 | 40.87 | 45.93 | 46.1 |
94
+ | **Math** | | | | | |
95
+ | GSM8k | **74.98** | 69.83 | 57.47 | 42.38 | 44.28 | 44.05 |
96
+ | MATH-500 | **74.0** | 73.0 | 48.4 | 45.4 | 13.2 | 19.8 |
97
+ | AMC-23 | 43.59 | **46.09** | 24.06 | 19.22 | 7.19 | 6.87 |
98
+ | AIME-24 | 11.25 | **12.5** | 2.29 | 0.42 | 1.46 | 0.41 |
99
+ | AIME-25 | **9.58** | 8.12 | 1.25 | 1.25 | 0.0 | 0.21 |
100
+ | **Science** | | | | | |
101
+ | GPQA | 26.34 | 27.68 | 26.26 | **28.19** | 26.59 | 26.76 |
102
+ | GPQA_Diamond | **35.19** | 33.33 | 25.59 | 21.55 | 25.08 | 31.31 |
103
+ | MMLU-Pro | **37.8** | 23.54 | 28.35 | 14.46 | 16.2 | 18.49 |
104
+ | MMLU-stem | **64.13** | 54.3 | 54.04 | 35.39 | 39.16 | 39.64 |
105
+ | **Code** | | | | | |
106
+ | HumanEval | **68.29** | 67.68 | 56.1 | 40.85 | 34.15 | 22.56 |
107
+ | HumanEval+ | **61.59** | 60.96 | 50.61 | 37.2 | 29.88 | 20.73 |
108
+ | MBPP | **64.81** | 58.73 | **64.81** | 57.67 | 33.6 | 20.63 |
109
+ | MBPP+ | **56.35** | 49.74 | 56.08 | 50.0 | 29.37 | 17.2 |
110
+ | LiveCodeBench | **17.61** | 14.87 | 12.52 | 5.09 | 2.35 | 0.78 |
111
+ | CRUXEval | **39.57** | 18.88 | 34.76 | 12.7 | 0.06 | 15.58 |
112
+ | **Instruction Following** | | | | | |
113
+ | IFEval | **80.66** | 70.77 | 45.33 | 61.48 | 55.34 | 54.26 |
114
+ | Alpaca-Eval | **28.18** | 21.89 | 9.54 | 17.87 | 9.38 | 6.98 |
115
+ | MTBench | **8.46** | 7.61 | 7.1 | 7.03 | 6.37 | 6.03 |
116
+ | LiveBench | 34.13 | **40.73** | 21.65 | 18.79 | 14.97 | 14.1 |
117
+
118
+ You can check more in detail on our [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/), detailed benchmarks.
119
+
120
+ # Useful links
121
+
122
+ - View [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/).
123
+ - Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
124
+
125
+ # Citation
126
+
127
+ If the Falcon-H1 family of models were helpful to your work, feel free to give us a cite.
128
+
129
+ ```
130
+ @misc{tiifalconh1,
131
+ title = {Falcon-H1},
132
+ author = {Falcon-LLM Team},
133
+ month = {May},
134
+ url = {https://falcon-lm.github.io/blog/falcon-h1},
135
+ year = {2025}
136
+ }
137
+ ```