--- library_name: transformers license: apache-2.0 base_model: timarni/qwen3_pretrain_wiki tags: - generated_from_trainer datasets: - timarni/MNLP_dataset_mmlu_train - timarni/sciq_alpaca model-index: - name: outputs/qwen3_wiki_sciq_mmlu results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.2` ```yaml base_model: timarni/qwen3_pretrain_wiki # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin strict: false chat_template: qwen3 datasets: - path: timarni/MNLP_dataset_mmlu_train type: alpaca split: train - path: timarni/sciq_alpaca type: alpaca split: train val_set_size: 0.1 output_dir: ./outputs/qwen3_wiki_sciq_mmlu dataset_prepared_path: last_run_prepared sequence_len: 4096 #2048 sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug) eval_sample_packing: true pad_to_sequence_len: true # To be sure that no LORA is done adapter: null lora: false merge_lora: false wandb_project: mnlp_project wandb_entity: tim-arni wandb_watch: wandb_name: qwen3_wiki_sciq_mmlu wandb_log_model: gradient_accumulation_steps: 16 # 2 micro_batch_size: 2 # 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00005 # 0.00005 bf16: auto tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 gradient_clipping: 1.0 flash_attention: true warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.01 special_tokens: ```

# outputs/qwen3_wiki_sciq_mmlu This model is a fine-tuned version of [timarni/qwen3_pretrain_wiki](https://huggingface.co/timarni/qwen3_pretrain_wiki) on the timarni/MNLP_dataset_mmlu_train and the timarni/sciq_alpaca datasets. It achieves the following results on the evaluation set: - Loss: 0.0664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3628 | 0.0147 | 1 | 0.3654 | | 0.0724 | 0.25 | 17 | 0.0709 | | 0.0601 | 0.5 | 34 | 0.0625 | | 0.0586 | 0.75 | 51 | 0.0589 | | 0.055 | 1.0 | 68 | 0.0563 | | 0.0344 | 1.25 | 85 | 0.0580 | | 0.0279 | 1.5 | 102 | 0.0614 | | 0.0287 | 1.75 | 119 | 0.0615 | | 0.0333 | 2.0 | 136 | 0.0598 | | 0.0188 | 2.25 | 153 | 0.0617 | | 0.0156 | 2.5 | 170 | 0.0659 | | 0.0176 | 2.75 | 187 | 0.0663 | | 0.0277 | 3.0 | 204 | 0.0664 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.1 - Tokenizers 0.21.1