---
library_name: transformers
license: apache-2.0
base_model: timarni/qwen3_pretrain_wiki
tags:
- generated_from_trainer
datasets:
- timarni/MNLP_dataset_mmlu_train
- timarni/sciq_alpaca
model-index:
- name: outputs/qwen3_wiki_sciq_mmlu
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.9.2`
```yaml
base_model: timarni/qwen3_pretrain_wiki
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_dataset_mmlu_train
type: alpaca
split: train
- path: timarni/sciq_alpaca
type: alpaca
split: train
val_set_size: 0.1
output_dir: ./outputs/qwen3_wiki_sciq_mmlu
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3_wiki_sciq_mmlu
wandb_log_model:
gradient_accumulation_steps: 16 # 2
micro_batch_size: 2 # 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.00005
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0
flash_attention: true
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.01
special_tokens:
```
# outputs/qwen3_wiki_sciq_mmlu
This model is a fine-tuned version of [timarni/qwen3_pretrain_wiki](https://huggingface.co/timarni/qwen3_pretrain_wiki) on the timarni/MNLP_dataset_mmlu_train and the timarni/sciq_alpaca datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3628 | 0.0147 | 1 | 0.3654 |
| 0.0724 | 0.25 | 17 | 0.0709 |
| 0.0601 | 0.5 | 34 | 0.0625 |
| 0.0586 | 0.75 | 51 | 0.0589 |
| 0.055 | 1.0 | 68 | 0.0563 |
| 0.0344 | 1.25 | 85 | 0.0580 |
| 0.0279 | 1.5 | 102 | 0.0614 |
| 0.0287 | 1.75 | 119 | 0.0615 |
| 0.0333 | 2.0 | 136 | 0.0598 |
| 0.0188 | 2.25 | 153 | 0.0617 |
| 0.0156 | 2.5 | 170 | 0.0659 |
| 0.0176 | 2.75 | 187 | 0.0663 |
| 0.0277 | 3.0 | 204 | 0.0664 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1