--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - LiquidAI/LFM2-1.2B --- This tiny model is for debugging. It is randomly initialized with the config adapted from [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B). ### Example usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_id = "tiny-random/lfm2" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", trust_remote_code=True, # attn_implementation="flash_attention_2" <- uncomment on compatible GPU ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Generate answer prompt = "What is C. elegans?" input_ids = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, return_tensors="pt", tokenize=True, ).to(model.device) output = model.generate( input_ids, do_sample=True, temperature=0.3, min_p=0.15, repetition_penalty=1.05, max_new_tokens=512, ) print(tokenizer.decode(output[0], skip_special_tokens=False)) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "LiquidAI/LFM2-1.2B" save_folder = "/tmp/tiny-random/lfm2" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['block_dim'] = 64 config_json['block_ff_dim'] = 128 config_json['full_attn_idxs'] = [1] config_json['conv_dim'] = 64 config_json['conv_dim_out'] = 64 config_json['hidden_size'] = 64 config_json['intermediate_size'] = 128 config_json['num_attention_heads'] = 2 config_json['num_heads'] = 2 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 1 config_json['tie_word_embeddings'] = True config_json['use_cache'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text Lfm2ForCausalLM( (model): Lfm2Model( (embed_tokens): Embedding(65536, 64, padding_idx=0) (layers): ModuleList( (0): Lfm2DecoderLayer( (conv): Lfm2ShortConv( (conv): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), groups=64, bias=False) (in_proj): Linear(in_features=64, out_features=192, bias=False) (out_proj): Linear(in_features=64, out_features=64, bias=False) ) (feed_forward): Lfm2MLP( (w1): Linear(in_features=64, out_features=256, bias=False) (w3): Linear(in_features=64, out_features=256, bias=False) (w2): Linear(in_features=256, out_features=64, bias=False) ) (operator_norm): Lfm2RMSNorm((64,), eps=1e-05) (ffn_norm): Lfm2RMSNorm((64,), eps=1e-05) ) (1): Lfm2DecoderLayer( (self_attn): Lfm2Attention( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (out_proj): Linear(in_features=64, out_features=64, bias=False) (q_layernorm): Lfm2RMSNorm((32,), eps=1e-05) (k_layernorm): Lfm2RMSNorm((32,), eps=1e-05) ) (feed_forward): Lfm2MLP( (w1): Linear(in_features=64, out_features=256, bias=False) (w3): Linear(in_features=64, out_features=256, bias=False) (w2): Linear(in_features=256, out_features=64, bias=False) ) (operator_norm): Lfm2RMSNorm((64,), eps=1e-05) (ffn_norm): Lfm2RMSNorm((64,), eps=1e-05) ) ) (rotary_emb): Lfm2RotaryEmbedding() (pos_emb): Lfm2RotaryEmbedding() (embedding_norm): Lfm2RMSNorm((64,), eps=1e-05) ) (lm_head): Linear(in_features=64, out_features=65536, bias=False) ) ```