--- license: cc-by-4.0 language: - en metrics: - accuracy - f1 - recall - precision base_model: - xlnet/xlnet-base-cased tags: - xlnet - text-classification - privacy - trust - mobile-health - healthcare - harpt - finetuned-model --- # XLNet-base Fine-Tuned on HARPT **Model Name**: `XLNet-base-finetuned-HARPT` **Tags**: `xlnet`, `text-classification`, `privacy`, `trust`, `mobile-health`, `healthcare`, `harpt`, `custom-dataset`, `finetuned-model` **License**: *Creative Commons 4.0* --- ## Overview This is a fine-tuned version of [XLNet-base](https://huggingface.co/xlnet-base-cased) trained on the **HARPT** (**H**ealth **A**pp **R**eviews for **P**rivacy and **T**rust) dataset - a large-scale corpus of mobile health app reviews annotated with labels reflecting privacy and trust-related concerns. The model performs **single-label, multi-class classification** across seven expert-defined categories. ## Classes The model predicts one of the following seven categories: - `data_control` - `data_quality` - `risk` - `support` - `reliability` - `competence` - `ethicality` ## Intended Use - Analyzing trust and privacy concerns in app reviews - Supporting responsible AI research in digital health - Benchmarking NLP models on healthcare-oriented text classification --- ## Usage ```python from transformers import XLNetForSequenceClassification, XLNetTokenizerFast # Load model and tokenizer model = XLNetForSequenceClassification.from_pretrained( "tk648/XLNet-base-finetuned-HARPT", use_safetensors=True ) tokenizer = XLNetTokenizerFast.from_pretrained("tk648/XLNet-base-finetuned-HARPT") # Label mapping id2label = { 0: "competence", 1: "data control", 2: "data quality", 3: "ethicality", 4: "reliability", 5: "risk", 6: "support" } # Run prediction text = "This app crashes every time I open it." inputs = tokenizer( text, return_tensors="pt", truncation=True, max_length=512, padding=True ) outputs = model(**inputs) predicted_class_id = outputs.logits.argmax(dim=1).item() # Print predicted label predicted_label = id2label[predicted_class_id] print("Predicted label:", predicted_label) ``` ## If you use this model, please cite: Timoteo Kelly, Abdulkadir Korkmaz, Samuel Mallet, Connor Souders, Sadra Aliakbarpour, and Praveen Rao. 2025. HARPT: A Corpus for Analyzing Consumers’ Trust and Privacy Concerns in Mobile Health Apps. Submitted to: Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM’25).