--- license: mit library_name: transformers pipeline_tag: text-generation --- This is the model is trained using paper, [M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models](https://arxiv.org/abs/2504.10449). | **Model** | **AIME 2025** | **AIME 2024** | **MATH 500** | **AMC 2023** | **OlympiadBench** | |-----------------------------------|---------------|---------------|--------------|--------------|-------------------| | Qwen2.5-Math-7B-Instruct (Transformer) | – | 13.3 | 79.8 | 50.6 | 40.7 | | rStar-Math-7B (Transformer) | – | 26.7 | 78.4 | 47.5 | 47.1 | | Eurus-2-7B-PRIME (Transformer) | – | 26.7 | 79.2 | 57.8 | 42.1 | | Qwen2.5-7B-SimpleRL (Transformer) | – | 26.7 | 82.4 | 62.5 | 43.3 | | DeepSeek-R1-Distill-Qwen-1.5B (Transformer) | 23.0 | 28.8 | 82.8 | 62.9 | 43.3 | | **M1-3B (Mamba Hybrid Models)** | 23.5 | 28.5 | 84.0 | 62.8 | 47.3 | Code: https://github.com/jxiw/M1 ``` @article{wang2025m1scalabletesttimecompute, title={M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models}, author={Junxiong Wang and Wen-Ding Li and Daniele Paliotta and Daniel Ritter and Alexander M. Rush and Tri Dao}, journal={arXiv preprint arXiv:2504.10449}, year={2025}, url={https://arxiv.org/abs/2504.10449}, }