# coding=utf-8 # Copyright 2021 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model ByT5.""" import warnings from typing import List, Optional, Tuple from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) class UTF8LikeByteTokenizer(PreTrainedTokenizer): """ Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: eos_token (`str`, *optional*, defaults to `""`): The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `""`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `""`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 125): Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as "" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginning ("" is the last token in the vocabulary like in ByT5 preprocessing see [here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)). additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ model_input_names = ["input_ids", "attention_mask"] def __init__( self, bos_token="", eos_token="", pad_token="", cls_token="", sep_token="", mask_token="", extra_ids=26, additional_special_tokens=None, **kwargs, ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: additional_special_tokens = [f"" for i in range(extra_ids)] elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0: # Check that we have the right number of extra_id special tokens extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByteTokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token # unk token needs to be in the vocab with correct index self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: bos_token, 3: cls_token, 4: sep_token, 5: mask_token} self.offset = len(self._added_tokens_decoder) self._utf_vocab_size = 2**8 # utf is 8 bits super().__init__( bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, cls_token=cls_token, sep_token=sep_token, mask_token=mask_token, extra_ids=0, additional_special_tokens=additional_special_tokens, # TODO extra ids are not used :sweatywmile: **kwargs, ) @property def vocab_size(self): return self._utf_vocab_size def get_vocab(self): vocab = { self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset) } vocab.update(self.added_tokens_encoder) return vocab def _add_bos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add bos again if user already added it.""" if len(token_ids) > 0 and token_ids[0] == self.bos_token_id: warnings.warn( f"This sequence already has {self.bos_token}. In future versions this behavior may lead to duplicated" " bos tokens being added." ) return token_ids else: return [self.bos_token_id] + token_ids def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X ` - pair of sequences: `A B ` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_bos_if_not_present(token_ids_0) token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_bos_if_not_present(token_ids_1) token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" token_ids = [] for c in text: token_ids.extend(self.unicode_to_bytes(ord(c))) # Convert to string token_ids = [str(i) for i in token_ids] return token_ids def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" token_id = int(token) + self.offset return token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return str(index - self.offset) def convert_tokens_to_string(self, tokens): token_id_with_special_tokens = [] for token in tokens: try: token_id = int(token) token_id_with_special_tokens.append(token_id) except ValueError: token_id_with_special_tokens.append(token) return self.decode_ids(token_id_with_special_tokens) def decode_ids(self, tokens: List[int]) -> str: decoded = "" i = 0 try: while i < len(tokens): if type(tokens[i]) == str: decoded += tokens[i] i += 1 continue if tokens[i] < 0b10000000: decoded += chr(tokens[i]) i += 1 elif tokens[i] < 0b11000000: decoded += chr(((tokens[i] & 0b00111111) << 7) + (tokens[i + 1] & 0b01111111)) i += 2 elif tokens[i] < 0b11100000: decoded += chr(((tokens[i] & 0b00011111) << 13) + ((tokens[i + 1] & 0b00111111) << 7) + (tokens[i + 2] & 0b01111111)) i += 3 elif tokens[i] < 0b11110000: decoded += chr( ((tokens[i] & 0b00001111) << 18) + ((tokens[i + 1] & 0b00111111) << 13) + ((tokens[i + 2] & 0b00111111) << 7) + (tokens[i + 3] & 0b01111111) ) i += 4 else: raise ValueError("invalid token") except IndexError: pass return decoded def unicode_to_bytes(self, codepoint: int) -> list[int]: codepoint_bin = f"{codepoint:b}" if len(codepoint_bin) <= 7: # 1byte char codepoint_bin = f"{codepoint:07b}" bytes_bin = [ "0" + codepoint_bin, ] elif len(codepoint_bin) <= 13: # 2byte char codepoint_bin = f"{codepoint:013b}" bytes_bin = [ "10" + codepoint_bin[:6], "0" + codepoint_bin[6:], ] elif len(codepoint_bin) <= 18: # 3byte char codepoint_bin = f"{codepoint:018b}" bytes_bin = [ "110" + codepoint_bin[:5], "10" + codepoint_bin[5:11], "0" + codepoint_bin[11:], ] elif len(codepoint_bin) <= 22: # 4byte char codepoint_bin = f"{codepoint:022b}" bytes_bin = [ "1110" + codepoint_bin[:4], "110" + codepoint_bin[4:9], "10" + codepoint_bin[9:15], "0" + codepoint_bin[15:], ] else: raise ValueError("codepoint is too large") return [int(byte, 2) for byte in bytes_bin] # ByteTokenizer has no vocab file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return ()