---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: The gate is yellow.
  sentences:
  - The gate is blue.
  - The person is starting a fire.
  - A woman is bungee jumping.
- source_sentence: A plane in the sky.
  sentences:
  - Two airplanes in the sky.
  - A man is standing in the rain.
  - There are two men near a wall.
- source_sentence: A woman is reading.
  sentences:
  - A woman is writing something.
  - A woman is applying eye shadow.
  - A dog and a red ball in the air.
- source_sentence: A baby is laughing.
  sentences:
  - The baby laughed in his car seat.
  - Suicide bomber strikes in Syria
  - Bangladesh Islamist execution upheld
- source_sentence: A woman is dancing.
  sentences:
  - A woman is dancing in railway station.
  - The flag was moving in the air.
  - three dogs growling On one another
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 7.871164130493101
  energy_consumed: 0.020249867843471606
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.112
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8647737221000229
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8747521728687471
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8627734228763478
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8657556253211545
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.862712112144467
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8657615257280495
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7442745641899206
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7513830366520415
      name: Spearman Dot
    - type: pearson_max
      value: 0.8647737221000229
      name: Pearson Max
    - type: spearman_max
      value: 0.8747521728687471
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8628378541768764
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8741345340758229
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8619744745534216
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8651450292937584
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8622841683977804
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8653280682431165
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.746359236761633
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7540849763868891
      name: Spearman Dot
    - type: pearson_max
      value: 0.8628378541768764
      name: Pearson Max
    - type: spearman_max
      value: 0.8741345340758229
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8588975886507025
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8714341050301952
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8590790006287132
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8634123185807864
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8591861535833625
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8628587088112977
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7185871795192371
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7288595287151053
      name: Spearman Dot
    - type: pearson_max
      value: 0.8591861535833625
      name: Pearson Max
    - type: spearman_max
      value: 0.8714341050301952
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8528583626543365
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8687502864484896
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8509433708242649
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.857615159782176
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8531616082767298
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8580823134153918
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.697019210549756
      name: Pearson Dot
    - type: spearman_dot
      value: 0.705924438927243
      name: Spearman Dot
    - type: pearson_max
      value: 0.8531616082767298
      name: Pearson Max
    - type: spearman_max
      value: 0.8687502864484896
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8340115410608493
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.858682843519445
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8351566362279711
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8445869885309296
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.838674217877368
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8460894143343873
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6579249229659768
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6712615573330701
      name: Spearman Dot
    - type: pearson_max
      value: 0.838674217877368
      name: Pearson Max
    - type: spearman_max
      value: 0.858682843519445
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.833720870548252
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8469501140979906
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8484755252691695
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8470024066861298
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8492651445573072
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8475238481800537
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6701649984837568
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6526285131648061
      name: Spearman Dot
    - type: pearson_max
      value: 0.8492651445573072
      name: Pearson Max
    - type: spearman_max
      value: 0.8475238481800537
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8325595554355977
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8467500241650668
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8474378528408064
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8462571021525837
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.848182316243596
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8466275072216626
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6736686039338646
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6572299516736647
      name: Spearman Dot
    - type: pearson_max
      value: 0.848182316243596
      name: Pearson Max
    - type: spearman_max
      value: 0.8467500241650668
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8225923032714455
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8403145699624681
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8420998942805191
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8419520394692916
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8434867831513
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8428522494561291
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6230179114374444
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6061595939729718
      name: Spearman Dot
    - type: pearson_max
      value: 0.8434867831513
      name: Pearson Max
    - type: spearman_max
      value: 0.8428522494561291
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8149976807930366
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8349547446101432
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8351661617446753
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8360899024374612
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8375785243041524
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8375574347771609
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5958381414366161
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5793444545861678
      name: Spearman Dot
    - type: pearson_max
      value: 0.8375785243041524
      name: Pearson Max
    - type: spearman_max
      value: 0.8375574347771609
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.7981336004264228
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8269913105115189
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8238799955007295
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8289121477853545
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8278657744625194
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8314643517951371
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5206433480609991
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5067194535547845
      name: Spearman Dot
    - type: pearson_max
      value: 0.8278657744625194
      name: Pearson Max
    - type: spearman_max
      value: 0.8314643517951371
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilbert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts-matryoshka")
# Run inference
sentences = [
    'A woman is dancing.',
    'A woman is dancing in railway station.',
    'The flag was moving in the air.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8648     |
| **spearman_cosine** | **0.8748** |
| pearson_manhattan   | 0.8628     |
| spearman_manhattan  | 0.8658     |
| pearson_euclidean   | 0.8627     |
| spearman_euclidean  | 0.8658     |
| pearson_dot         | 0.7443     |
| spearman_dot        | 0.7514     |
| pearson_max         | 0.8648     |
| spearman_max        | 0.8748     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8628     |
| **spearman_cosine** | **0.8741** |
| pearson_manhattan   | 0.862      |
| spearman_manhattan  | 0.8651     |
| pearson_euclidean   | 0.8623     |
| spearman_euclidean  | 0.8653     |
| pearson_dot         | 0.7464     |
| spearman_dot        | 0.7541     |
| pearson_max         | 0.8628     |
| spearman_max        | 0.8741     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8589     |
| **spearman_cosine** | **0.8714** |
| pearson_manhattan   | 0.8591     |
| spearman_manhattan  | 0.8634     |
| pearson_euclidean   | 0.8592     |
| spearman_euclidean  | 0.8629     |
| pearson_dot         | 0.7186     |
| spearman_dot        | 0.7289     |
| pearson_max         | 0.8592     |
| spearman_max        | 0.8714     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8529     |
| **spearman_cosine** | **0.8688** |
| pearson_manhattan   | 0.8509     |
| spearman_manhattan  | 0.8576     |
| pearson_euclidean   | 0.8532     |
| spearman_euclidean  | 0.8581     |
| pearson_dot         | 0.697      |
| spearman_dot        | 0.7059     |
| pearson_max         | 0.8532     |
| spearman_max        | 0.8688     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.834      |
| **spearman_cosine** | **0.8587** |
| pearson_manhattan   | 0.8352     |
| spearman_manhattan  | 0.8446     |
| pearson_euclidean   | 0.8387     |
| spearman_euclidean  | 0.8461     |
| pearson_dot         | 0.6579     |
| spearman_dot        | 0.6713     |
| pearson_max         | 0.8387     |
| spearman_max        | 0.8587     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.8337    |
| **spearman_cosine** | **0.847** |
| pearson_manhattan   | 0.8485    |
| spearman_manhattan  | 0.847     |
| pearson_euclidean   | 0.8493    |
| spearman_euclidean  | 0.8475    |
| pearson_dot         | 0.6702    |
| spearman_dot        | 0.6526    |
| pearson_max         | 0.8493    |
| spearman_max        | 0.8475    |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8326     |
| **spearman_cosine** | **0.8468** |
| pearson_manhattan   | 0.8474     |
| spearman_manhattan  | 0.8463     |
| pearson_euclidean   | 0.8482     |
| spearman_euclidean  | 0.8466     |
| pearson_dot         | 0.6737     |
| spearman_dot        | 0.6572     |
| pearson_max         | 0.8482     |
| spearman_max        | 0.8468     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8226     |
| **spearman_cosine** | **0.8403** |
| pearson_manhattan   | 0.8421     |
| spearman_manhattan  | 0.842      |
| pearson_euclidean   | 0.8435     |
| spearman_euclidean  | 0.8429     |
| pearson_dot         | 0.623      |
| spearman_dot        | 0.6062     |
| pearson_max         | 0.8435     |
| spearman_max        | 0.8429     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.815     |
| **spearman_cosine** | **0.835** |
| pearson_manhattan   | 0.8352    |
| spearman_manhattan  | 0.8361    |
| pearson_euclidean   | 0.8376    |
| spearman_euclidean  | 0.8376    |
| pearson_dot         | 0.5958    |
| spearman_dot        | 0.5793    |
| pearson_max         | 0.8376    |
| spearman_max        | 0.8376    |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.7981    |
| **spearman_cosine** | **0.827** |
| pearson_manhattan   | 0.8239    |
| spearman_manhattan  | 0.8289    |
| pearson_euclidean   | 0.8279    |
| spearman_euclidean  | 0.8315    |
| pearson_dot         | 0.5206    |
| spearman_dot        | 0.5067    |
| pearson_max         | 0.8279    |
| spearman_max        | 0.8315    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                        | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | score             |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>1.0</code>  |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>0.76</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | score             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.2778 | 100  | 23.266        | 21.5517 | 0.8305                      | 0.8355                      | 0.8361                      | 0.8157                     | 0.8366                      | -                            | -                            | -                            | -                           | -                            |
| 0.5556 | 200  | 21.8736       | 21.6172 | 0.8327                      | 0.8388                      | 0.8446                      | 0.8206                     | 0.8453                      | -                            | -                            | -                            | -                           | -                            |
| 0.8333 | 300  | 21.6241       | 22.0565 | 0.8475                      | 0.8538                      | 0.8556                      | 0.8345                     | 0.8565                      | -                            | -                            | -                            | -                           | -                            |
| 1.1111 | 400  | 21.075        | 23.6719 | 0.8545                      | 0.8581                      | 0.8634                      | 0.8435                     | 0.8644                      | -                            | -                            | -                            | -                           | -                            |
| 1.3889 | 500  | 20.4122       | 22.5926 | 0.8592                      | 0.8624                      | 0.8650                      | 0.8436                     | 0.8656                      | -                            | -                            | -                            | -                           | -                            |
| 1.6667 | 600  | 20.6586       | 22.5999 | 0.8514                      | 0.8563                      | 0.8595                      | 0.8389                     | 0.8597                      | -                            | -                            | -                            | -                           | -                            |
| 1.9444 | 700  | 20.3262       | 22.2965 | 0.8582                      | 0.8631                      | 0.8666                      | 0.8465                     | 0.8667                      | -                            | -                            | -                            | -                           | -                            |
| 2.2222 | 800  | 19.7948       | 23.1844 | 0.8621                      | 0.8659                      | 0.8688                      | 0.8499                     | 0.8694                      | -                            | -                            | -                            | -                           | -                            |
| 2.5    | 900  | 19.2826       | 23.1351 | 0.8653                      | 0.8687                      | 0.8703                      | 0.8547                     | 0.8710                      | -                            | -                            | -                            | -                           | -                            |
| 2.7778 | 1000 | 19.1063       | 23.7141 | 0.8641                      | 0.8672                      | 0.8691                      | 0.8531                     | 0.8695                      | -                            | -                            | -                            | -                           | -                            |
| 3.0556 | 1100 | 19.4575       | 23.0055 | 0.8673                      | 0.8702                      | 0.8726                      | 0.8574                     | 0.8728                      | -                            | -                            | -                            | -                           | -                            |
| 3.3333 | 1200 | 18.0727       | 24.9288 | 0.8659                      | 0.8692                      | 0.8715                      | 0.8565                     | 0.8722                      | -                            | -                            | -                            | -                           | -                            |
| 3.6111 | 1300 | 18.1698       | 25.3114 | 0.8675                      | 0.8701                      | 0.8728                      | 0.8576                     | 0.8734                      | -                            | -                            | -                            | -                           | -                            |
| 3.8889 | 1400 | 18.2321       | 25.3777 | 0.8688                      | 0.8714                      | 0.8741                      | 0.8587                     | 0.8748                      | -                            | -                            | -                            | -                           | -                            |
| 4.0    | 1440 | -             | -       | -                           | -                           | -                           | -                          | -                           | 0.8350                       | 0.8403                       | 0.8468                       | 0.8270                      | 0.8470                       |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.020 kWh
- **Carbon Emitted**: 0.008 kg of CO2
- **Hours Used**: 0.112 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->