--- language: - en tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: microsoft/mpnet-base widget: - source_sentence: A man is jumping unto his filthy bed. sentences: - A young male is looking at a newspaper while 2 females walks past him. - The bed is dirty. - The man is on the moon. - source_sentence: A carefully balanced male stands on one foot near a clean ocean beach area. sentences: - A man is ouside near the beach. - Three policemen patrol the streets on bikes - A man is sitting on his couch. - source_sentence: The man is wearing a blue shirt. sentences: - Near the trashcan the man stood and smoked - A man in a blue shirt leans on a wall beside a road with a blue van and red car with water in the background. - A man in a black shirt is playing a guitar. - source_sentence: The girls are outdoors. sentences: - Two girls riding on an amusement part ride. - a guy laughs while doing laundry - Three girls are standing together in a room, one is listening, one is writing on a wall and the third is talking to them. - source_sentence: A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling. sentences: - A worker is looking out of a manhole. - A man is giving a presentation. - The workers are both inside the manhole. datasets: - sentence-transformers/all-nli pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine co2_eq_emissions: emissions: 205.739032893975 energy_consumed: 0.5292975927419334 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 2.452 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on microsoft/mpnet-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 768 type: sts-dev-768 metrics: - type: pearson_cosine value: 0.8427806843466507 name: Pearson Cosine - type: spearman_cosine value: 0.8508672705970183 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 512 type: sts-dev-512 metrics: - type: pearson_cosine value: 0.8402650019702758 name: Pearson Cosine - type: spearman_cosine value: 0.8492501196021981 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 256 type: sts-dev-256 metrics: - type: pearson_cosine value: 0.8346871892249894 name: Pearson Cosine - type: spearman_cosine value: 0.8462852114011874 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 128 type: sts-dev-128 metrics: - type: pearson_cosine value: 0.8258126981506843 name: Pearson Cosine - type: spearman_cosine value: 0.8396442287070809 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 64 type: sts-dev-64 metrics: - type: pearson_cosine value: 0.8133510090549183 name: Pearson Cosine - type: spearman_cosine value: 0.8314093123007742 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.8189065344720828 name: Pearson Cosine - type: spearman_cosine value: 0.8358553875433253 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.8185683063331012 name: Pearson Cosine - type: spearman_cosine value: 0.8361687236813662 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.8129602938883278 name: Pearson Cosine - type: spearman_cosine value: 0.8332021961323041 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.8030325360463209 name: Pearson Cosine - type: spearman_cosine value: 0.826154869627039 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.7903762214352186 name: Pearson Cosine - type: spearman_cosine value: 0.8193971659006509 name: Spearman Cosine --- # SentenceTransformer based on microsoft/mpnet-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/mpnet-base-nli-matryoshka-reproduced") # Run inference sentences = [ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.', 'A worker is looking out of a manhole.', 'The workers are both inside the manhole.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-dev-768` and `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters: ```json { "truncate_dim": 768 } ``` | Metric | sts-dev-768 | sts-test-768 | |:--------------------|:------------|:-------------| | pearson_cosine | 0.8428 | 0.8189 | | **spearman_cosine** | **0.8509** | **0.8359** | #### Semantic Similarity * Datasets: `sts-dev-512` and `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters: ```json { "truncate_dim": 512 } ``` | Metric | sts-dev-512 | sts-test-512 | |:--------------------|:------------|:-------------| | pearson_cosine | 0.8403 | 0.8186 | | **spearman_cosine** | **0.8493** | **0.8362** | #### Semantic Similarity * Datasets: `sts-dev-256` and `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters: ```json { "truncate_dim": 256 } ``` | Metric | sts-dev-256 | sts-test-256 | |:--------------------|:------------|:-------------| | pearson_cosine | 0.8347 | 0.813 | | **spearman_cosine** | **0.8463** | **0.8332** | #### Semantic Similarity * Datasets: `sts-dev-128` and `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters: ```json { "truncate_dim": 128 } ``` | Metric | sts-dev-128 | sts-test-128 | |:--------------------|:------------|:-------------| | pearson_cosine | 0.8258 | 0.803 | | **spearman_cosine** | **0.8396** | **0.8262** | #### Semantic Similarity * Datasets: `sts-dev-64` and `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters: ```json { "truncate_dim": 64 } ``` | Metric | sts-dev-64 | sts-test-64 | |:--------------------|:-----------|:------------| | pearson_cosine | 0.8134 | 0.7904 | | **spearman_cosine** | **0.8314** | **0.8194** | ## Training Details ### Training Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 557,850 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 6,584 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-64_spearman_cosine | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-128_spearman_cosine | sts-test-64_spearman_cosine | |:------:|:-----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:| | 0.0459 | 1600 | 4.3243 | 1.5267 | 0.8525 | 0.8475 | 0.8438 | 0.8356 | 0.8155 | - | - | - | - | - | | 0.0918 | 3200 | 2.4538 | 1.4448 | 0.8479 | 0.8439 | 0.8403 | 0.8346 | 0.8249 | - | - | - | - | - | | 0.1377 | 4800 | 2.2829 | 1.5117 | 0.8507 | 0.8481 | 0.8429 | 0.8348 | 0.8203 | - | - | - | - | - | | 0.1836 | 6400 | 2.0446 | 1.2684 | 0.8574 | 0.8541 | 0.8498 | 0.8413 | 0.8302 | - | - | - | - | - | | 0.2294 | 8000 | 1.8867 | 1.3107 | 0.8452 | 0.8423 | 0.8400 | 0.8352 | 0.8255 | - | - | - | - | - | | 0.2753 | 9600 | 1.747 | 1.1663 | 0.8456 | 0.8420 | 0.8384 | 0.8292 | 0.8229 | - | - | - | - | - | | 0.3212 | 11200 | 1.6297 | 1.0809 | 0.8420 | 0.8388 | 0.8360 | 0.8294 | 0.8205 | - | - | - | - | - | | 0.3671 | 12800 | 1.5974 | 1.0853 | 0.8374 | 0.8352 | 0.8310 | 0.8264 | 0.8184 | - | - | - | - | - | | 0.4130 | 14400 | 1.5227 | 1.0440 | 0.8479 | 0.8457 | 0.8434 | 0.8380 | 0.8266 | - | - | - | - | - | | 0.4589 | 16000 | 1.3835 | 1.0718 | 0.8365 | 0.8341 | 0.8310 | 0.8258 | 0.8172 | - | - | - | - | - | | 0.5048 | 17600 | 1.3893 | 1.0140 | 0.8384 | 0.8363 | 0.8339 | 0.8275 | 0.8178 | - | - | - | - | - | | 0.5507 | 19200 | 1.3203 | 1.0048 | 0.8418 | 0.8400 | 0.8364 | 0.8292 | 0.8204 | - | - | - | - | - | | 0.5966 | 20800 | 1.2396 | 0.9407 | 0.8458 | 0.8439 | 0.8404 | 0.8353 | 0.8274 | - | - | - | - | - | | 0.6425 | 22400 | 1.1842 | 0.9541 | 0.8435 | 0.8404 | 0.8384 | 0.8335 | 0.8257 | - | - | - | - | - | | 0.6883 | 24000 | 1.1217 | 0.9000 | 0.8534 | 0.8512 | 0.8478 | 0.8408 | 0.8297 | - | - | - | - | - | | 0.7342 | 25600 | 1.093 | 0.8731 | 0.8525 | 0.8503 | 0.8467 | 0.8406 | 0.8313 | - | - | - | - | - | | 0.7801 | 27200 | 1.0609 | 0.8238 | 0.8528 | 0.8510 | 0.8469 | 0.8399 | 0.8312 | - | - | - | - | - | | 0.8260 | 28800 | 0.9807 | 0.8264 | 0.8497 | 0.8478 | 0.8448 | 0.8384 | 0.8295 | - | - | - | - | - | | 0.8719 | 30400 | 1.0061 | 0.8135 | 0.8455 | 0.8439 | 0.8405 | 0.8338 | 0.8256 | - | - | - | - | - | | 0.9178 | 32000 | 0.9724 | 0.7965 | 0.8517 | 0.8499 | 0.8465 | 0.8401 | 0.8319 | - | - | - | - | - | | 0.9637 | 33600 | 0.9057 | 0.7841 | 0.8509 | 0.8493 | 0.8463 | 0.8396 | 0.8314 | - | - | - | - | - | | -1 | -1 | - | - | - | - | - | - | - | 0.8359 | 0.8362 | 0.8332 | 0.8262 | 0.8194 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.529 kWh - **Carbon Emitted**: 0.206 kg of CO2 - **Hours Used**: 2.452 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.1.0.dev0 - Transformers: 4.51.1 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```