--- library_name: transformers tags: - generated_from_trainer metrics: - rouge model-index: - name: gpt22gpt2-gpt2-large-cnn-dailymail-seed42_std_percentile results: [] --- # gpt22gpt2-gpt2-large-cnn-dailymail-seed42_std_percentile This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0071 - Rouge1: 0.3061 - Rouge2: 0.0939 - Rougel: 0.1780 - Rougelsum: 0.2848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.7029 | 0.2229 | 2000 | 2.5427 | 0.2437 | 0.0532 | 0.1469 | 0.2285 | | 2.5218 | 0.4458 | 4000 | 2.3777 | 0.2636 | 0.0661 | 0.1578 | 0.2455 | | 2.4141 | 0.6687 | 6000 | 2.2899 | 0.2683 | 0.0695 | 0.1587 | 0.2506 | | 2.3452 | 0.8916 | 8000 | 2.2199 | 0.2888 | 0.0814 | 0.1714 | 0.2694 | | 2.0037 | 1.1145 | 10000 | 2.1817 | 0.2984 | 0.0851 | 0.1729 | 0.2772 | | 1.9905 | 1.3374 | 12000 | 2.1423 | 0.2907 | 0.0823 | 0.1713 | 0.2719 | | 1.9711 | 1.5603 | 14000 | 2.0983 | 0.3055 | 0.0915 | 0.1786 | 0.2850 | | 1.9476 | 1.7832 | 16000 | 2.0547 | 0.3186 | 0.0998 | 0.1858 | 0.2972 | | 1.8964 | 2.0061 | 18000 | 2.0510 | 0.3032 | 0.0919 | 0.1778 | 0.2826 | | 1.6389 | 2.2290 | 20000 | 2.0485 | 0.3185 | 0.0997 | 0.1857 | 0.2962 | | 1.6251 | 2.4519 | 22000 | 2.0328 | 0.2992 | 0.0889 | 0.1743 | 0.2782 | | 1.6119 | 2.6748 | 24000 | 2.0138 | 0.3045 | 0.0939 | 0.1778 | 0.2832 | | 1.6093 | 2.8977 | 26000 | 2.0071 | 0.3061 | 0.0939 | 0.1780 | 0.2848 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1