.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

OpenAI GPT2
-----------------------------------------------------------------------------------------------------------------------

Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OpenAI GPT-2 model was proposed in `Language Models are Unsupervised Multitask Learners
<https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf>`_ by Alec
Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. It's a causal (unidirectional)
transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.

The abstract from the paper is the following:

*GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million
web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than
10X the amount of data.*

Tips:

- GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
  the left.
- GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
  token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
  observed in the `run_generation.py` example script.
- The PyTorch models can take the `past` as input, which is the previously computed key/value attention pairs. Using
  this `past` value prevents the model from re-computing pre-computed values in the context of text generation. See
  `reusing the past in generative models <../quickstart.html#using-the-past>`__ for more information on the usage of
  this argument.

`Write With Transformer <https://transformer.huggingface.co/doc/gpt2-large>`__ is a webapp created and hosted by
Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five
different sizes: small, medium, large, xl and a distilled version of the small checkpoint: `distilgpt-2`.

This model was contributed by `thomwolf <https://huggingface.co/thomwolf>`__. The original code can be found `here
<https://openai.com/blog/better-language-models/>`__.


GPT2Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2Config
    :members:


GPT2Tokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2Tokenizer
    :members: save_vocabulary


GPT2TokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2TokenizerFast
    :members:


GPT2 specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.models.gpt2.modeling_gpt2.GPT2DoubleHeadsModelOutput
    :members:

.. autoclass:: transformers.models.gpt2.modeling_tf_gpt2.TFGPT2DoubleHeadsModelOutput
    :members:


GPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2Model
    :members: forward, parallelize, deparallelize


GPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2LMHeadModel
    :members: forward, parallelize, deparallelize


GPT2DoubleHeadsModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2DoubleHeadsModel
    :members: forward


GPT2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.GPT2ForSequenceClassification
    :members: forward


TFGPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFGPT2Model
    :members: call


TFGPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFGPT2LMHeadModel
    :members: call


TFGPT2DoubleHeadsModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFGPT2DoubleHeadsModel
    :members: call

TFGPT2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFGPT2ForSequenceClassification
    :members: call

TFSequenceClassifierOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast
    :members:


FlaxGPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.FlaxGPT2Model
    :members: __call__


FlaxGPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.FlaxGPT2LMHeadModel
    :members: __call__