--- inference: false library_name: transformers base_model: CohereLabs/aya-expanse-32b language: - uk - crh - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - vi datasets: - lang-uk/malyuk - QIRIM/crh_monocorpus multilinguality: - multililingual tags: - aya-tokenizer - ukraine - corpus-linguistics pretty_name: “ayayay - ukrainized aya tokenizer” --- # Ayayay — Malyuk-powered Ukrainianization for the Aya-Expanse Tokenizer #### Ayayay is the first tokenizer that makes Ukrainian the core language in a multilingual vocabulary — while retaining as much compatibility with the original Aya-Expanse tokenizer as possible through careful (partially manual) token remapping. ## Feature Overview: 1. +118,985 new Cyrillic BPE tokens from [malyuk_qirim_tokenizer.json](https://huggingface.co/transhumanist-already-exists/ayayay_tokenizer/blob/main/malyuk_qirim_tokenizer.json) trained on full [Malyuk Ukrainian corpus](https://huggingface.co/datasets/lang-uk/malyuk/tree/main) plus the Cyrillic slice of the [Crimean Tatar corpus](https://huggingface.co/datasets/QIRIM/crh_monocorpus). Keeping only sub-words that appear ≥ 4 000 times. 2. Just the tail end of the Aya vocab (IDs > 150 000) and the 25K Cyrillic tokens already present in Aya were overwritten, keeping the rest of the vocabulary intact. 3. Unchanged tokens preserve their IDs, enabling direct reuse of Aya-Expanse embedding. 4. Vocab size, Special-token set, pre/post-tokenisation logic, and output formatting match Aya-Expanse one-for-one. ## Simple example ```python tokenizer = AutoTokenizer.from_pretrained( "transhumanist-already-exists/ayayay-tokenizer" ) toks = tokenizer("Всі красиві зберігають оптимізм", add_special_tokens=False) print(toks.input_ids) # [123903, 175118, 167580, 196099] - only 4 tokens 💪🏻 ``` ## Metrics Acknowledgement: evaluation results provided by [@Sofetory](https://huggingface.co/Sofetory). ||lang-uk/malyuk |100k texts|allenai/c4(en)| 100k texts|allenai/c4(es, fr, it, de) | 400k texts |QIRIM/crh_monocorpus(Cyrillic) | 94 texts |allenai/c4(ru) | 100k texts|allenai/c4(bg) | 100k texts|allenai/c4(be)| 100k texts| |--------------------------------|-------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------|-----------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------| |words count 22,898,164 36,170,971 198,173,216 1,868,259 42,557,519 44,627,199 43,153,645 | |||||||||||||||| |tokenizers |tokens |toks/word|tokens |toks/word|tokens |toks/word|tokens |toks/word|tokens |toks/word|tokens |toks/word|tokens |toks/word| |google/gemma-3-12b-it |57,388,402 |2.506 |47,285,432 |1.307 |354,241,840 |1.788 |6,240,944 |3.341 |95,520,817 |2.245 |103,950,626 |2.329 |131,398,147 |3.045 | |Qwen/Qwen3-8B |84,408,084 |3.686 |46,884,593 |1.296 |395,581,536 |1.996 |7,956,741 |4.259 |116,115,062 |2.728 |132,597,427 |2.971 |173,571,099 |4.022 | |meta-llama/Llama-3.1-8B-Instruct|57,226,997 |2.499 |46,085,724 |1.274 |382,143,751 |1.928 |7,386,873 |3.954 |104,974,733 |2.467 |119,123,733 |2.669 |150,189,294 |3.48 | |microsoft/Phi-4-mini-instruct |59,447,036 |2.596 |45,423,925 |**1.256** |335,188,687 |**1.691** |5,995,822 |3.209 |91,824,464 |**2.158** |102,472,523 |2.296 |119,587,038 |**2.771** | |CohereLabs/aya-expanse-8b |50,973,632 |2.226 |47,364,187 |1.309 |353,221,932 |1.782 |6,614,719 |3.541 |93,089,697 |2.187 |112,612,668 |**2.523** |141,262,943 |3.273 | |**ayayay-tokenizer (Ours)** |37,094,157 |**1.62**🤩 |48,288,882 |1.335 |372,587,959 |1.88 |4,238,587 |**2.269** |107,331,167 |2.522 |114,292,191 |2.561 |133,618,186 |3.096 | |Comments Significant 27 % improvement over the Aya-Expanse baseline; absolute leader in Ukrainian tokenization.Tokens-per-word for English rises by less than 4 % compared with the baseline.Ayayay tokenizer retains strong multilingual capabilities Shows significant improvement on QIRIM Cyrillic versus the original aya and other tokenizersRussian efficiency drops, owing to the Ukrainian-centric changes, but still beats Qwen. Other Cyrillic languages, such as Bulgarian and Belarusian, perform well after the token replacement; Belarusian improves especially noticeably.| ## Contents - [tokenizer.json](tokenizer.json): Byte‐level tokenizer spec (vocab, merges, model settings). - [tokenizer_utf8.json](tokenizer_utf8.json): Human-readable dump: UTF-8-decoded sub-tokens and merge rules, for corpus-linguistic inspection. - [malyuk_qirim_tokenizer.json](malyuk_qirim_tokenizer.json): Aya-style tokenizer trained on the full Malyuk Ukrainian corpus plus Cyrillic QIRIM (100 : 1 ratio), with min_frequency = 4_000. - [merge_info.json](merge_info.json): Lists the replaced Aya token IDs and the IDs of the added Malyuk tokens in [malyuk_qirim_tokenizer](https://huggingface.co/transhumanist-already-exists/ayayay_tokenizer/blob/main/malyuk_qirim_tokenizer.json). - [tokenizer_config.json](tokenizer_config.json): Configuration metadata. - [special_tokens_map.json](special_tokens_map.json): Mapping of special token (The same with Aya). ## Initialisation of embeddings for new tokens in Aya-Expanse models Some tokens are identical to those in the original Aya-Expanse tokenizer. For the newly added tokens, you can initialise embeddings with tools such as [Focus](https://github.com/konstantinjdobler/focus/tree/main) and [Zett](https://github.com/bminixhofer/zett). The simplest—and often effective—alternative is to initialise the new embeddings randomly and train them with a warm-up schedule. ## Citation **BibTeX:** ```bibtex @misc{zaduha2025post9164, author = "{Bohdan Didenko}", title = "{Post \#9164 on Telegram Channel Zaduha}", howpublished = "\url{https://t.me/zaduha/9164}", month = june, year = {2025}, note = "[Online; accessed 8 June 2025]" } ```