Hasnonname commited on
Commit
080cd68
·
verified ·
1 Parent(s): 396dc1f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +271 -0
  3. added_tokens.json +24 -0
  4. checkpoint-376/added_tokens.json +24 -0
  5. checkpoint-376/config.json +28 -0
  6. checkpoint-376/generation_config.json +7 -0
  7. checkpoint-376/global_step376/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  8. checkpoint-376/global_step376/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  9. checkpoint-376/global_step376/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  10. checkpoint-376/global_step376/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  11. checkpoint-376/global_step376/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-376/global_step376/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-376/global_step376/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-376/latest +1 -0
  15. checkpoint-376/merges.txt +0 -0
  16. checkpoint-376/model.safetensors.index.json +778 -0
  17. checkpoint-376/rng_state_0.pth +3 -0
  18. checkpoint-376/rng_state_1.pth +3 -0
  19. checkpoint-376/rng_state_2.pth +3 -0
  20. checkpoint-376/rng_state_3.pth +3 -0
  21. checkpoint-376/rng_state_4.pth +3 -0
  22. checkpoint-376/rng_state_5.pth +3 -0
  23. checkpoint-376/rng_state_6.pth +3 -0
  24. checkpoint-376/rng_state_7.pth +3 -0
  25. checkpoint-376/scheduler.pt +3 -0
  26. checkpoint-376/special_tokens_map.json +31 -0
  27. checkpoint-376/tokenizer.json +3 -0
  28. checkpoint-376/tokenizer_config.json +208 -0
  29. checkpoint-376/trainer_state.json +2737 -0
  30. checkpoint-376/training_args.bin +3 -0
  31. checkpoint-376/vocab.json +0 -0
  32. checkpoint-376/zero_to_fp32.py +760 -0
  33. checkpoint-423/added_tokens.json +24 -0
  34. checkpoint-423/config.json +28 -0
  35. checkpoint-423/generation_config.json +7 -0
  36. checkpoint-423/global_step423/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  37. checkpoint-423/global_step423/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  38. checkpoint-423/global_step423/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  39. checkpoint-423/global_step423/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  40. checkpoint-423/global_step423/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  41. checkpoint-423/global_step423/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  42. checkpoint-423/global_step423/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  43. checkpoint-423/global_step423/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  44. checkpoint-423/latest +1 -0
  45. checkpoint-423/merges.txt +0 -0
  46. checkpoint-423/model.safetensors.index.json +778 -0
  47. checkpoint-423/rng_state_0.pth +3 -0
  48. checkpoint-423/rng_state_1.pth +3 -0
  49. checkpoint-423/rng_state_2.pth +3 -0
  50. checkpoint-423/rng_state_3.pth +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-32B
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - datasets/Sugarquill10k_Clean.jsonl
9
+ - datasets/Mixed-Novels-Completions.jsonl
10
+ - datasets/Mixed-Novels-Completions-2.jsonl
11
+ - datasets/recursal-scp-8k-filtered-4k.jsonl
12
+ - datasets/disco.jsonl
13
+ - datasets/disco-chat.json
14
+ - datasets/competition-math-sharegpt.jsonl
15
+ - datasets/systemchat-1k-sharegpt.jsonl
16
+ - datasets/opencai_rp_sharegpt.json
17
+ - datasets/floyd-instruct-8k.jsonl
18
+ - datasets/woke-identity.jsonl
19
+ - datasets/Claude-Sonnet35-Charcard-Unslop-v2.json
20
+ - datasets/kalo-opus-22k-unslop.json
21
+ - datasets/gryphe-4o-WP-sharegpt-cleaned.json
22
+ - datasets/discord-logs-cleaned-sharegpt.json
23
+ - datasets/creative-writing-multiturn-16k.json
24
+ - datasets/limo-sharegpt.jsonl
25
+ - datasets/tot-bio-2k-subset-sharegpt.json
26
+ - datasets/gpqa-benchmaxxing.jsonl
27
+ - datasets/UBW_Tapestries.json
28
+ - datasets/medical-o1-reasoning-default-sys.jsonl
29
+ model-index:
30
+ - name: marigold-fft
31
+ results: []
32
+ ---
33
+
34
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
35
+ should probably proofread and complete it, then remove this comment. -->
36
+
37
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
38
+ <details><summary>See axolotl config</summary>
39
+
40
+ axolotl version: `0.8.0.dev0`
41
+ ```yaml
42
+ base_model: Qwen/Qwen2.5-32B
43
+ model_type: AutoModelForCausalLM
44
+
45
+ load_in_8bit: false
46
+ load_in_4bit: false
47
+ strict: false
48
+
49
+ chat_template: jinja
50
+ chat_template_jinja: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{%- if messages[0]['role'] == 'system' %}{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}{%- else %}{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}{%- endif %}{%- for message in messages %}{%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}{%- elif message.role == \"assistant\" %}{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' }}{%- endif %}{%- endfor %}{%- if add_generation_prompt %}{{- '<|im_start|>assistant\n' }}{%- endif %}"
51
+ datasets:
52
+ # Continued pretrain: novels, short stories
53
+ - path: datasets/Sugarquill10k_Clean.jsonl
54
+ type: completion
55
+ - path: datasets/Mixed-Novels-Completions.jsonl
56
+ type: completion
57
+ - path: datasets/Mixed-Novels-Completions-2.jsonl
58
+ type: completion
59
+ - path: datasets/recursal-scp-8k-filtered-4k.jsonl
60
+ type: completion
61
+ # overfitting on disco elysium
62
+ - path: datasets/disco.jsonl
63
+ type: completion
64
+ - path: datasets/disco-chat.json
65
+ type: completion
66
+
67
+ # Instruct datasets (local)
68
+ - path: datasets/competition-math-sharegpt.jsonl
69
+ type: chat_template
70
+ field_messages: conversations
71
+ message_field_role: from
72
+ message_field_content: value
73
+ - path: datasets/systemchat-1k-sharegpt.jsonl
74
+ type: chat_template
75
+ field_messages: conversations
76
+ message_field_role: from
77
+ message_field_content: value
78
+ - path: datasets/opencai_rp_sharegpt.json
79
+ type: chat_template
80
+ field_messages: conversations
81
+ message_field_role: from
82
+ message_field_content: value
83
+ - path: datasets/floyd-instruct-8k.jsonl
84
+ type: chat_template
85
+ field_messages: conversations
86
+ message_field_role: from
87
+ message_field_content: value
88
+ - path: datasets/woke-identity.jsonl
89
+ type: chat_template
90
+ field_messages: conversations
91
+ message_field_role: from
92
+ message_field_content: value
93
+ - path: datasets/Claude-Sonnet35-Charcard-Unslop-v2.json
94
+ type: chat_template
95
+ field_messages: conversations
96
+ message_field_role: from
97
+ message_field_content: value
98
+ - path: datasets/kalo-opus-22k-unslop.json
99
+ type: chat_template
100
+ field_messages: conversations
101
+ message_field_role: from
102
+ message_field_content: value
103
+ - path: datasets/gryphe-4o-WP-sharegpt-cleaned.json
104
+ type: chat_template
105
+ field_messages: conversations
106
+ message_field_role: from
107
+ message_field_content: value
108
+ - path: datasets/discord-logs-cleaned-sharegpt.json
109
+ type: chat_template
110
+ field_messages: conversations
111
+ message_field_role: from
112
+ message_field_content: value
113
+ - path: datasets/creative-writing-multiturn-16k.json
114
+ type: chat_template
115
+ field_messages: conversations
116
+ message_field_role: from
117
+ message_field_content: value
118
+ - path: datasets/limo-sharegpt.jsonl
119
+ type: chat_template
120
+ field_messages: conversations
121
+ message_field_role: from
122
+ message_field_content: value
123
+ - path: datasets/tot-bio-2k-subset-sharegpt.json
124
+ type: chat_template
125
+ field_messages: conversations
126
+ message_field_role: from
127
+ message_field_content: value
128
+ - path: datasets/gpqa-benchmaxxing.jsonl
129
+ type: chat_template
130
+ field_messages: conversations
131
+ message_field_role: from
132
+ message_field_content: value
133
+ - path: datasets/UBW_Tapestries.json
134
+ type: chat_template
135
+ field_messages: conversations
136
+ message_field_role: from
137
+ message_field_content: value
138
+ - path: datasets/medical-o1-reasoning-default-sys.jsonl
139
+ type: chat_template
140
+ field_messages: conversations
141
+ message_field_role: from
142
+ message_field_content: value
143
+
144
+ shuffle_merged_datasets: true
145
+
146
+ special_tokens:
147
+ eos_token: "<|im_end|>"
148
+
149
+ dataset_prepared_path: last_run_prepared
150
+ val_set_size: 0.02
151
+ output_dir: ./marigold-fft
152
+
153
+ sequence_len: 10240 # could try 10240 too?
154
+ sample_packing: true
155
+ eval_sample_packing: false
156
+ pad_to_sequence_len: true
157
+
158
+ gradient_accumulation_steps: 8
159
+ micro_batch_size: 1
160
+ num_epochs: 3
161
+ optimizer: paged_adamw_8bit
162
+ lr_scheduler: cosine
163
+ learning_rate: 5e-5
164
+
165
+ weight_decay: 0.1
166
+ max_grad_norm: 3
167
+
168
+ train_on_inputs: false
169
+ group_by_length: false
170
+ bf16: auto
171
+ fp16:
172
+ tf32: false
173
+
174
+ gradient_checkpointing: unsloth
175
+ gradient_checkpointing_kwargs:
176
+ use_reentrant: true
177
+ early_stopping_patience:
178
+ resume_from_checkpoint:
179
+ local_rank:
180
+ logging_steps: 1
181
+ xformers_attention:
182
+ flash_attention: true
183
+
184
+ warmup_ratio: 0.05
185
+ evals_per_epoch: 4
186
+ eval_table_size:
187
+
188
+ saves_per_epoch: 4
189
+ save_total_limit: 5
190
+
191
+ debug:
192
+
193
+ plugins:
194
+ - axolotl.integrations.liger.LigerPlugin
195
+ liger_rope: true
196
+ liger_rms_norm: true
197
+ liger_glu_activation: true
198
+ liger_layer_norm: true
199
+ liger_fused_linear_cross_entropy: true
200
+
201
+ deepspeed: deepspeed_configs/zero3_bf16.json # multigpu only, maybe zero3_bf16_cpuoffload_params if OOM
202
+
203
+ wandb_project: Qwen2.5-32B-Marigold-v0
204
+ wandb_entity:
205
+ wandb_name: Marigold-v0-fft
206
+
207
+ ```
208
+
209
+ </details><br>
210
+
211
+ # marigold-fft
212
+
213
+ This model is a fine-tuned version of [Qwen/Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) on the datasets/Sugarquill10k_Clean.jsonl, the datasets/Mixed-Novels-Completions.jsonl, the datasets/Mixed-Novels-Completions-2.jsonl, the datasets/recursal-scp-8k-filtered-4k.jsonl, the datasets/disco.jsonl, the datasets/disco-chat.json, the datasets/competition-math-sharegpt.jsonl, the datasets/systemchat-1k-sharegpt.jsonl, the datasets/opencai_rp_sharegpt.json, the datasets/floyd-instruct-8k.jsonl, the datasets/woke-identity.jsonl, the datasets/Claude-Sonnet35-Charcard-Unslop-v2.json, the datasets/kalo-opus-22k-unslop.json, the datasets/gryphe-4o-WP-sharegpt-cleaned.json, the datasets/discord-logs-cleaned-sharegpt.json, the datasets/creative-writing-multiturn-16k.json, the datasets/limo-sharegpt.jsonl, the datasets/tot-bio-2k-subset-sharegpt.json, the datasets/gpqa-benchmaxxing.jsonl, the datasets/UBW_Tapestries.json and the datasets/medical-o1-reasoning-default-sys.jsonl datasets.
214
+ It achieves the following results on the evaluation set:
215
+ - Loss: 2.2256
216
+
217
+ ## Model description
218
+
219
+ More information needed
220
+
221
+ ## Intended uses & limitations
222
+
223
+ More information needed
224
+
225
+ ## Training and evaluation data
226
+
227
+ More information needed
228
+
229
+ ## Training procedure
230
+
231
+ ### Training hyperparameters
232
+
233
+ The following hyperparameters were used during training:
234
+ - learning_rate: 5e-05
235
+ - train_batch_size: 1
236
+ - eval_batch_size: 1
237
+ - seed: 42
238
+ - distributed_type: multi-GPU
239
+ - num_devices: 8
240
+ - gradient_accumulation_steps: 8
241
+ - total_train_batch_size: 64
242
+ - total_eval_batch_size: 8
243
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
244
+ - lr_scheduler_type: cosine
245
+ - lr_scheduler_warmup_steps: 27
246
+ - num_epochs: 3.0
247
+
248
+ ### Training results
249
+
250
+ | Training Loss | Epoch | Step | Validation Loss |
251
+ |:-------------:|:------:|:----:|:---------------:|
252
+ | 2.0226 | 0.0054 | 1 | 3.5764 |
253
+ | 1.8588 | 0.2522 | 47 | 2.2616 |
254
+ | 1.7952 | 0.5044 | 94 | 2.1989 |
255
+ | 1.8266 | 0.7565 | 141 | 2.1619 |
256
+ | 1.5997 | 1.0107 | 188 | 2.1603 |
257
+ | 1.5134 | 1.2629 | 235 | 2.1552 |
258
+ | 1.4614 | 1.5151 | 282 | 2.1373 |
259
+ | 1.6362 | 1.7673 | 329 | 2.1242 |
260
+ | 1.1374 | 2.0215 | 376 | 2.2327 |
261
+ | 1.2301 | 2.2736 | 423 | 2.2244 |
262
+ | 1.1773 | 2.5258 | 470 | 2.2257 |
263
+ | 1.1864 | 2.7780 | 517 | 2.2256 |
264
+
265
+
266
+ ### Framework versions
267
+
268
+ - Transformers 4.49.0
269
+ - Pytorch 2.5.1+cu124
270
+ - Datasets 3.2.0
271
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-376/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-376/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-32B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 27648,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 64,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 64,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 131072,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-376/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.49.0"
7
+ }
checkpoint-376/global_step376/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6519223794aeec7cba147ea83fda556f4816e177e91a2d056567943e8a5720cd
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56eb32e0b83c43c190cadfe06f9d0222f6877801341b96ae59aae659f419616b
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f1a67beaf0bcfa4294858a257c72108021f3a0c60b58841167aa8fa7e3f5b75
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e264a11482c721e3f78fb4405d5fae54a1c9e0fb1d36fca149d97dc331d468f
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b170ca3fcd576069209c745af12c8677b3bfc8184fb7f63ae67e7c2562a4c18
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:030c63686ad188b43df5f716d3e9d740c265f98e488b5cd2fe59c61e84dac918
3
+ size 381701
checkpoint-376/global_step376/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a23a7f6033d0649873d0692ad857cfcca67ed08e2618349a312d8fad5d17229a
3
+ size 381701
checkpoint-376/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step376
checkpoint-376/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-376/model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 65527752704
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
776
+ "model.norm.weight": "model-00014-of-00014.safetensors"
777
+ }
778
+ }
checkpoint-376/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feb6462d333dbc5bb5e497ea9b0adb960f7616f79e6eea63222de6d5bd559516
3
+ size 15984
checkpoint-376/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b045e1bfa728f51c8b51ab0faa20b128a4fbd350da006b9b39a19e24abdf5a74
3
+ size 15984
checkpoint-376/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f76a3d058d2628a61848c2441d313f251278bd8f74ce43dc44d8cd8ad3e619a8
3
+ size 15984
checkpoint-376/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7f72fc498e6eaa671cdc0e8a627a668b8ef607063a22ddb4edbc05e791be830
3
+ size 15984
checkpoint-376/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12889af98e175b734a788f4c5b8c4da91dd61ff3a05aaf61b9d4c66aa3dd8ad6
3
+ size 15984
checkpoint-376/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe21a86abfceeac2cf2f48afd61a9a506cf61a287f3403f1adf391bb2ffa5a83
3
+ size 15984
checkpoint-376/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73488bec91f9dee6d8105d06f99edaf4d27b6b064250d4c7023f33285b2f3132
3
+ size 15984
checkpoint-376/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf6ee1cc2e1325b428a21172ec4e61b7220c5489751ea11c06bb66c77a0cd08
3
+ size 15984
checkpoint-376/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d16508495d4c8907ea78daea5096d2db67acfedc31b220db8562c4bb1e2de919
3
+ size 1064
checkpoint-376/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-376/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-376/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{%- if messages[0]['role'] == 'system' %}{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}{%- else %}{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}{%- endif %}{%- for message in messages %}{%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}{%- elif message.role == \"assistant\" %}{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' }}{%- endif %}{%- endfor %}{%- if add_generation_prompt %}{{- '<|im_start|>assistant\n' }}{%- endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-376/trainer_state.json ADDED
@@ -0,0 +1,2737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.021462105969148,
5
+ "eval_steps": 47,
6
+ "global_step": 376,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0053655264922870555,
13
+ "grad_norm": 1.2779298491774165,
14
+ "learning_rate": 1.8518518518518519e-06,
15
+ "loss": 2.0226,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0053655264922870555,
20
+ "eval_loss": 3.5763909816741943,
21
+ "eval_runtime": 403.4915,
22
+ "eval_samples_per_second": 6.317,
23
+ "eval_steps_per_second": 0.791,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.010731052984574111,
28
+ "grad_norm": 0.9868395151451838,
29
+ "learning_rate": 3.7037037037037037e-06,
30
+ "loss": 2.0251,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01609657947686117,
35
+ "grad_norm": 1.124719320101948,
36
+ "learning_rate": 5.555555555555556e-06,
37
+ "loss": 2.0676,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.021462105969148222,
42
+ "grad_norm": 0.8967993867216901,
43
+ "learning_rate": 7.4074074074074075e-06,
44
+ "loss": 2.0685,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02682763246143528,
49
+ "grad_norm": 0.8530329942799596,
50
+ "learning_rate": 9.259259259259259e-06,
51
+ "loss": 1.975,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03219315895372234,
56
+ "grad_norm": 17.572932401470002,
57
+ "learning_rate": 1.1111111111111112e-05,
58
+ "loss": 2.0319,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.03755868544600939,
63
+ "grad_norm": 1.5955614660997672,
64
+ "learning_rate": 1.2962962962962962e-05,
65
+ "loss": 1.9776,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.042924211938296444,
70
+ "grad_norm": 1.0305843114650708,
71
+ "learning_rate": 1.4814814814814815e-05,
72
+ "loss": 1.9384,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.0482897384305835,
77
+ "grad_norm": 0.7931768664816836,
78
+ "learning_rate": 1.6666666666666667e-05,
79
+ "loss": 2.0357,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.05365526492287056,
84
+ "grad_norm": 0.7458181490503686,
85
+ "learning_rate": 1.8518518518518518e-05,
86
+ "loss": 1.9343,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.05902079141515761,
91
+ "grad_norm": 1.0379874858551188,
92
+ "learning_rate": 2.037037037037037e-05,
93
+ "loss": 1.9069,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.06438631790744467,
98
+ "grad_norm": 0.9634098196921086,
99
+ "learning_rate": 2.2222222222222223e-05,
100
+ "loss": 1.8831,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.06975184439973173,
105
+ "grad_norm": 0.8492217551097285,
106
+ "learning_rate": 2.4074074074074074e-05,
107
+ "loss": 1.9665,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.07511737089201878,
112
+ "grad_norm": 0.8866414055564286,
113
+ "learning_rate": 2.5925925925925925e-05,
114
+ "loss": 1.9859,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.08048289738430583,
119
+ "grad_norm": 0.8975616587977772,
120
+ "learning_rate": 2.777777777777778e-05,
121
+ "loss": 1.9621,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.08584842387659289,
126
+ "grad_norm": 0.8856060845121474,
127
+ "learning_rate": 2.962962962962963e-05,
128
+ "loss": 2.0504,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.09121395036887994,
133
+ "grad_norm": 0.7934430921825818,
134
+ "learning_rate": 3.148148148148148e-05,
135
+ "loss": 1.8965,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.096579476861167,
140
+ "grad_norm": 0.8411958882279533,
141
+ "learning_rate": 3.3333333333333335e-05,
142
+ "loss": 1.834,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.10194500335345406,
147
+ "grad_norm": 0.9605732267993595,
148
+ "learning_rate": 3.518518518518519e-05,
149
+ "loss": 2.0321,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.10731052984574112,
154
+ "grad_norm": 0.8964432934098547,
155
+ "learning_rate": 3.7037037037037037e-05,
156
+ "loss": 1.9165,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.11267605633802817,
161
+ "grad_norm": 0.8325547065304583,
162
+ "learning_rate": 3.888888888888889e-05,
163
+ "loss": 2.0088,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.11804158283031523,
168
+ "grad_norm": 0.7337982135739225,
169
+ "learning_rate": 4.074074074074074e-05,
170
+ "loss": 1.8652,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.12340710932260228,
175
+ "grad_norm": 0.8703749413838572,
176
+ "learning_rate": 4.259259259259259e-05,
177
+ "loss": 1.9384,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.12877263581488935,
182
+ "grad_norm": 0.752681510079145,
183
+ "learning_rate": 4.4444444444444447e-05,
184
+ "loss": 1.84,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1341381623071764,
189
+ "grad_norm": 0.7664305287185245,
190
+ "learning_rate": 4.62962962962963e-05,
191
+ "loss": 1.917,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.13950368879946345,
196
+ "grad_norm": 0.7376417365374465,
197
+ "learning_rate": 4.814814814814815e-05,
198
+ "loss": 1.8995,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1448692152917505,
203
+ "grad_norm": 0.6723119101020634,
204
+ "learning_rate": 5e-05,
205
+ "loss": 1.8572,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.15023474178403756,
210
+ "grad_norm": 0.6636335261172684,
211
+ "learning_rate": 4.999956245830044e-05,
212
+ "loss": 1.8311,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.15560026827632462,
217
+ "grad_norm": 0.7118137563548644,
218
+ "learning_rate": 4.9998249848517185e-05,
219
+ "loss": 1.9461,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.16096579476861167,
224
+ "grad_norm": 0.5571924001587539,
225
+ "learning_rate": 4.999606221659595e-05,
226
+ "loss": 1.9125,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.16633132126089872,
231
+ "grad_norm": 0.5895748551871794,
232
+ "learning_rate": 4.999299963911115e-05,
233
+ "loss": 1.9295,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.17169684775318578,
238
+ "grad_norm": 0.5114717351226575,
239
+ "learning_rate": 4.9989062223263216e-05,
240
+ "loss": 1.8642,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.17706237424547283,
245
+ "grad_norm": 0.5658751591114588,
246
+ "learning_rate": 4.998425010687484e-05,
247
+ "loss": 1.9465,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.18242790073775988,
252
+ "grad_norm": 0.4198888613535172,
253
+ "learning_rate": 4.997856345838615e-05,
254
+ "loss": 1.7824,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.18779342723004694,
259
+ "grad_norm": 0.558439585084249,
260
+ "learning_rate": 4.99720024768488e-05,
261
+ "loss": 1.9157,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.193158953722334,
266
+ "grad_norm": 0.4888963940737741,
267
+ "learning_rate": 4.996456739191905e-05,
268
+ "loss": 1.9136,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.19852448021462105,
273
+ "grad_norm": 0.5106753170932593,
274
+ "learning_rate": 4.995625846384966e-05,
275
+ "loss": 1.8623,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.20389000670690813,
280
+ "grad_norm": 0.5942581620888907,
281
+ "learning_rate": 4.994707598348085e-05,
282
+ "loss": 1.8741,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.20925553319919518,
287
+ "grad_norm": 0.5106367767120957,
288
+ "learning_rate": 4.993702027223004e-05,
289
+ "loss": 1.9413,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.21462105969148224,
294
+ "grad_norm": 0.5113103948113709,
295
+ "learning_rate": 4.992609168208069e-05,
296
+ "loss": 1.9966,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.2199865861837693,
301
+ "grad_norm": 0.5212461839914251,
302
+ "learning_rate": 4.9914290595569895e-05,
303
+ "loss": 1.8474,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.22535211267605634,
308
+ "grad_norm": 0.5161668483087154,
309
+ "learning_rate": 4.9901617425775067e-05,
310
+ "loss": 1.8557,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.2307176391683434,
315
+ "grad_norm": 0.5484719777790631,
316
+ "learning_rate": 4.988807261629942e-05,
317
+ "loss": 1.8769,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.23608316566063045,
322
+ "grad_norm": 0.4937411819105057,
323
+ "learning_rate": 4.987365664125647e-05,
324
+ "loss": 1.8923,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.2414486921529175,
329
+ "grad_norm": 0.5804971756745295,
330
+ "learning_rate": 4.985837000525343e-05,
331
+ "loss": 1.954,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.24681421864520456,
336
+ "grad_norm": 0.531027559174979,
337
+ "learning_rate": 4.984221324337356e-05,
338
+ "loss": 1.9758,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.25217974513749164,
343
+ "grad_norm": 0.5132447531432143,
344
+ "learning_rate": 4.982518692115744e-05,
345
+ "loss": 1.8588,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.25217974513749164,
350
+ "eval_loss": 2.2616188526153564,
351
+ "eval_runtime": 403.9965,
352
+ "eval_samples_per_second": 6.309,
353
+ "eval_steps_per_second": 0.79,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.2575452716297787,
358
+ "grad_norm": 0.4799971353542736,
359
+ "learning_rate": 4.980729163458312e-05,
360
+ "loss": 1.8558,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.26291079812206575,
365
+ "grad_norm": 0.4318157242619782,
366
+ "learning_rate": 4.978852801004534e-05,
367
+ "loss": 1.9574,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.2682763246143528,
372
+ "grad_norm": 0.44416051699732234,
373
+ "learning_rate": 4.976889670433355e-05,
374
+ "loss": 1.7988,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.27364185110663986,
379
+ "grad_norm": 0.42380891285410505,
380
+ "learning_rate": 4.974839840460895e-05,
381
+ "loss": 1.8296,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.2790073775989269,
386
+ "grad_norm": 0.4989220387491634,
387
+ "learning_rate": 4.97270338283804e-05,
388
+ "loss": 1.8996,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.28437290409121396,
393
+ "grad_norm": 0.44554710351703636,
394
+ "learning_rate": 4.970480372347934e-05,
395
+ "loss": 1.9553,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.289738430583501,
400
+ "grad_norm": 0.5597504355268026,
401
+ "learning_rate": 4.9681708868033616e-05,
402
+ "loss": 1.9979,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.29510395707578807,
407
+ "grad_norm": 0.4758356280331154,
408
+ "learning_rate": 4.9657750070440196e-05,
409
+ "loss": 1.9244,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.3004694835680751,
414
+ "grad_norm": 0.4337532785073617,
415
+ "learning_rate": 4.963292816933692e-05,
416
+ "loss": 1.9099,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.3058350100603622,
421
+ "grad_norm": 0.48193864337289033,
422
+ "learning_rate": 4.9607244033573156e-05,
423
+ "loss": 1.8076,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.31120053655264923,
428
+ "grad_norm": 0.5180685237569209,
429
+ "learning_rate": 4.9580698562179297e-05,
430
+ "loss": 1.9031,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.3165660630449363,
435
+ "grad_norm": 0.4227856708321325,
436
+ "learning_rate": 4.955329268433543e-05,
437
+ "loss": 1.8111,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.32193158953722334,
442
+ "grad_norm": 0.4457771321490526,
443
+ "learning_rate": 4.9525027359338696e-05,
444
+ "loss": 1.8771,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3272971160295104,
449
+ "grad_norm": 0.383809821251567,
450
+ "learning_rate": 4.949590357656975e-05,
451
+ "loss": 1.8384,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.33266264252179745,
456
+ "grad_norm": 0.5245332667935808,
457
+ "learning_rate": 4.946592235545815e-05,
458
+ "loss": 1.948,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3380281690140845,
463
+ "grad_norm": 0.48131587989680386,
464
+ "learning_rate": 4.9435084745446666e-05,
465
+ "loss": 1.9546,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.34339369550637155,
470
+ "grad_norm": 0.47579745445020977,
471
+ "learning_rate": 4.940339182595451e-05,
472
+ "loss": 1.9085,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.3487592219986586,
477
+ "grad_norm": 0.5162389548444078,
478
+ "learning_rate": 4.9370844706339594e-05,
479
+ "loss": 1.9263,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.35412474849094566,
484
+ "grad_norm": 0.4430593262438425,
485
+ "learning_rate": 4.933744452585966e-05,
486
+ "loss": 1.8264,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.3594902749832327,
491
+ "grad_norm": 0.4564426740705147,
492
+ "learning_rate": 4.930319245363248e-05,
493
+ "loss": 1.7974,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.36485580147551977,
498
+ "grad_norm": 0.4896650401826788,
499
+ "learning_rate": 4.926808968859483e-05,
500
+ "loss": 1.8567,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.3702213279678068,
505
+ "grad_norm": 0.4051071793789495,
506
+ "learning_rate": 4.923213745946059e-05,
507
+ "loss": 1.8201,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.3755868544600939,
512
+ "grad_norm": 0.48978661474326063,
513
+ "learning_rate": 4.919533702467771e-05,
514
+ "loss": 1.8006,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.38095238095238093,
519
+ "grad_norm": 0.5175966382748892,
520
+ "learning_rate": 4.9157689672384174e-05,
521
+ "loss": 1.7904,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.386317907444668,
526
+ "grad_norm": 0.49081107125596507,
527
+ "learning_rate": 4.91191967203629e-05,
528
+ "loss": 1.9606,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.39168343393695504,
533
+ "grad_norm": 0.5920859101699153,
534
+ "learning_rate": 4.907985951599563e-05,
535
+ "loss": 1.8124,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.3970489604292421,
540
+ "grad_norm": 0.4106853545996278,
541
+ "learning_rate": 4.9039679436215734e-05,
542
+ "loss": 1.9402,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.4024144869215292,
547
+ "grad_norm": 0.6429573337250454,
548
+ "learning_rate": 4.899865788746005e-05,
549
+ "loss": 1.8233,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.40778001341381626,
554
+ "grad_norm": 0.5770635817407002,
555
+ "learning_rate": 4.895679630561963e-05,
556
+ "loss": 1.8909,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.4131455399061033,
561
+ "grad_norm": 0.8202937145800111,
562
+ "learning_rate": 4.891409615598949e-05,
563
+ "loss": 1.8635,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.41851106639839036,
568
+ "grad_norm": 0.6871160286583309,
569
+ "learning_rate": 4.88705589332173e-05,
570
+ "loss": 1.9497,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.4238765928906774,
575
+ "grad_norm": 0.4438407032445468,
576
+ "learning_rate": 4.882618616125111e-05,
577
+ "loss": 1.9336,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.42924211938296447,
582
+ "grad_norm": 0.545225076259868,
583
+ "learning_rate": 4.878097939328596e-05,
584
+ "loss": 1.843,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.4346076458752515,
589
+ "grad_norm": 0.5120969176703908,
590
+ "learning_rate": 4.873494021170953e-05,
591
+ "loss": 1.9019,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4399731723675386,
596
+ "grad_norm": 0.41579446347477983,
597
+ "learning_rate": 4.868807022804678e-05,
598
+ "loss": 1.8617,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.44533869885982563,
603
+ "grad_norm": 0.5510693357302907,
604
+ "learning_rate": 4.864037108290347e-05,
605
+ "loss": 1.9433,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.4507042253521127,
610
+ "grad_norm": 0.40913367019675556,
611
+ "learning_rate": 4.859184444590882e-05,
612
+ "loss": 1.8353,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.45606975184439974,
617
+ "grad_norm": 0.3763529830498608,
618
+ "learning_rate": 4.854249201565701e-05,
619
+ "loss": 1.7299,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.4614352783366868,
624
+ "grad_norm": 0.47448012995411376,
625
+ "learning_rate": 4.849231551964771e-05,
626
+ "loss": 1.8547,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.46680080482897385,
631
+ "grad_norm": 0.4181797287844973,
632
+ "learning_rate": 4.84413167142257e-05,
633
+ "loss": 1.8186,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.4721663313212609,
638
+ "grad_norm": 0.4781785535505977,
639
+ "learning_rate": 4.838949738451929e-05,
640
+ "loss": 1.8965,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.47753185781354796,
645
+ "grad_norm": 0.4351347675471463,
646
+ "learning_rate": 4.833685934437787e-05,
647
+ "loss": 1.863,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.482897384305835,
652
+ "grad_norm": 0.3874884362959953,
653
+ "learning_rate": 4.8283404436308464e-05,
654
+ "loss": 1.7396,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.48826291079812206,
659
+ "grad_norm": 0.49444219921157534,
660
+ "learning_rate": 4.8229134531411166e-05,
661
+ "loss": 1.8444,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.4936284372904091,
666
+ "grad_norm": 0.39922493357750344,
667
+ "learning_rate": 4.8174051529313704e-05,
668
+ "loss": 1.8247,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.49899396378269617,
673
+ "grad_norm": 0.5511215543224721,
674
+ "learning_rate": 4.81181573581049e-05,
675
+ "loss": 1.9533,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.5043594902749833,
680
+ "grad_norm": 0.41108793496635143,
681
+ "learning_rate": 4.8061453974267195e-05,
682
+ "loss": 1.7952,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.5043594902749833,
687
+ "eval_loss": 2.198935031890869,
688
+ "eval_runtime": 403.21,
689
+ "eval_samples_per_second": 6.322,
690
+ "eval_steps_per_second": 0.791,
691
+ "step": 94
692
+ },
693
+ {
694
+ "epoch": 0.5097250167672703,
695
+ "grad_norm": 0.43234228757508586,
696
+ "learning_rate": 4.80039433626082e-05,
697
+ "loss": 1.8667,
698
+ "step": 95
699
+ },
700
+ {
701
+ "epoch": 0.5150905432595574,
702
+ "grad_norm": 0.40707489762011484,
703
+ "learning_rate": 4.7945627536191166e-05,
704
+ "loss": 1.9081,
705
+ "step": 96
706
+ },
707
+ {
708
+ "epoch": 0.5204560697518444,
709
+ "grad_norm": 0.41662703960667113,
710
+ "learning_rate": 4.788650853626456e-05,
711
+ "loss": 1.7536,
712
+ "step": 97
713
+ },
714
+ {
715
+ "epoch": 0.5258215962441315,
716
+ "grad_norm": 0.39754454922458654,
717
+ "learning_rate": 4.7826588432190614e-05,
718
+ "loss": 1.8851,
719
+ "step": 98
720
+ },
721
+ {
722
+ "epoch": 0.5311871227364185,
723
+ "grad_norm": 0.41218018944985396,
724
+ "learning_rate": 4.7765869321372836e-05,
725
+ "loss": 1.8062,
726
+ "step": 99
727
+ },
728
+ {
729
+ "epoch": 0.5365526492287056,
730
+ "grad_norm": 0.41546782428712065,
731
+ "learning_rate": 4.7704353329182673e-05,
732
+ "loss": 1.8491,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.5419181757209927,
737
+ "grad_norm": 0.47175537335479406,
738
+ "learning_rate": 4.7642042608885064e-05,
739
+ "loss": 1.7917,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.5472837022132797,
744
+ "grad_norm": 0.4373071645022652,
745
+ "learning_rate": 4.7578939341563095e-05,
746
+ "loss": 1.8632,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.5526492287055668,
751
+ "grad_norm": 0.4369286574512984,
752
+ "learning_rate": 4.751504573604162e-05,
753
+ "loss": 1.8377,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.5580147551978538,
758
+ "grad_norm": 0.40840919093725575,
759
+ "learning_rate": 4.745036402880999e-05,
760
+ "loss": 1.8397,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.5633802816901409,
765
+ "grad_norm": 0.4023593789216688,
766
+ "learning_rate": 4.738489648394373e-05,
767
+ "loss": 1.9389,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.5687458081824279,
772
+ "grad_norm": 0.45139851873493203,
773
+ "learning_rate": 4.731864539302531e-05,
774
+ "loss": 1.9384,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.574111334674715,
779
+ "grad_norm": 0.518973698127367,
780
+ "learning_rate": 4.725161307506391e-05,
781
+ "loss": 1.8388,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.579476861167002,
786
+ "grad_norm": 0.41440109186821383,
787
+ "learning_rate": 4.7183801876414294e-05,
788
+ "loss": 1.9807,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.5848423876592891,
793
+ "grad_norm": 0.485066583270121,
794
+ "learning_rate": 4.711521417069462e-05,
795
+ "loss": 1.9518,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.5902079141515761,
800
+ "grad_norm": 0.453283667200083,
801
+ "learning_rate": 4.70458523587034e-05,
802
+ "loss": 1.8874,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.5955734406438632,
807
+ "grad_norm": 0.40638037542695366,
808
+ "learning_rate": 4.697571886833544e-05,
809
+ "loss": 1.8138,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.6009389671361502,
814
+ "grad_norm": 0.47718260435002885,
815
+ "learning_rate": 4.6904816154496854e-05,
816
+ "loss": 1.8409,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.6063044936284373,
821
+ "grad_norm": 0.45172842172725275,
822
+ "learning_rate": 4.683314669901918e-05,
823
+ "loss": 1.9261,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.6116700201207244,
828
+ "grad_norm": 0.4713867113135493,
829
+ "learning_rate": 4.676071301057243e-05,
830
+ "loss": 1.8502,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.6170355466130114,
835
+ "grad_norm": 0.42451831321750794,
836
+ "learning_rate": 4.668751762457734e-05,
837
+ "loss": 1.8489,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.6224010731052985,
842
+ "grad_norm": 0.3958564758105134,
843
+ "learning_rate": 4.6613563103116594e-05,
844
+ "loss": 1.8922,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.6277665995975855,
849
+ "grad_norm": 0.4009292301802374,
850
+ "learning_rate": 4.653885203484515e-05,
851
+ "loss": 1.8685,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.6331321260898726,
856
+ "grad_norm": 0.37598195515170946,
857
+ "learning_rate": 4.6463387034899645e-05,
858
+ "loss": 1.7889,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.6384976525821596,
863
+ "grad_norm": 0.4710597532282601,
864
+ "learning_rate": 4.638717074480682e-05,
865
+ "loss": 1.8739,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.6438631790744467,
870
+ "grad_norm": 0.4146663267990981,
871
+ "learning_rate": 4.631020583239107e-05,
872
+ "loss": 1.8988,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.6492287055667337,
877
+ "grad_norm": 0.4354294422619394,
878
+ "learning_rate": 4.6232494991681094e-05,
879
+ "loss": 1.8517,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.6545942320590208,
884
+ "grad_norm": 0.5470562094587934,
885
+ "learning_rate": 4.615404094281554e-05,
886
+ "loss": 1.812,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.6599597585513078,
891
+ "grad_norm": 0.37147901827060426,
892
+ "learning_rate": 4.607484643194788e-05,
893
+ "loss": 1.8447,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.6653252850435949,
898
+ "grad_norm": 0.462225949803499,
899
+ "learning_rate": 4.599491423115014e-05,
900
+ "loss": 1.8442,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.670690811535882,
905
+ "grad_norm": 0.4600536423365438,
906
+ "learning_rate": 4.5914247138316025e-05,
907
+ "loss": 1.926,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.676056338028169,
912
+ "grad_norm": 0.4049920788749757,
913
+ "learning_rate": 4.5832847977062874e-05,
914
+ "loss": 1.8001,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.681421864520456,
919
+ "grad_norm": 0.4052262687972146,
920
+ "learning_rate": 4.5750719596632885e-05,
921
+ "loss": 1.8616,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.6867873910127431,
926
+ "grad_norm": 0.455611587260568,
927
+ "learning_rate": 4.5667864871793345e-05,
928
+ "loss": 1.7792,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.6921529175050302,
933
+ "grad_norm": 0.4321930788528261,
934
+ "learning_rate": 4.558428670273601e-05,
935
+ "loss": 1.911,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.6975184439973172,
940
+ "grad_norm": 0.3922798652619637,
941
+ "learning_rate": 4.549998801497564e-05,
942
+ "loss": 1.8979,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.7028839704896043,
947
+ "grad_norm": 0.4338149926251678,
948
+ "learning_rate": 4.54149717592475e-05,
949
+ "loss": 1.793,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.7082494969818913,
954
+ "grad_norm": 0.42943405977885124,
955
+ "learning_rate": 4.532924091140417e-05,
956
+ "loss": 1.8606,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.7136150234741784,
961
+ "grad_norm": 0.4145321079739444,
962
+ "learning_rate": 4.524279847231131e-05,
963
+ "loss": 1.906,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.7189805499664654,
968
+ "grad_norm": 0.38959038753607894,
969
+ "learning_rate": 4.515564746774265e-05,
970
+ "loss": 1.7323,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.7243460764587525,
975
+ "grad_norm": 0.49146581928185773,
976
+ "learning_rate": 4.5067790948274094e-05,
977
+ "loss": 1.8303,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.7297116029510395,
982
+ "grad_norm": 0.4638570517033698,
983
+ "learning_rate": 4.49792319891769e-05,
984
+ "loss": 1.8243,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.7350771294433266,
989
+ "grad_norm": 0.38160033679573113,
990
+ "learning_rate": 4.4889973690310085e-05,
991
+ "loss": 1.8186,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.7404426559356136,
996
+ "grad_norm": 0.5253837731077495,
997
+ "learning_rate": 4.480001917601185e-05,
998
+ "loss": 1.9086,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.7458081824279007,
1003
+ "grad_norm": 0.5010255463058967,
1004
+ "learning_rate": 4.470937159499029e-05,
1005
+ "loss": 1.9014,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.7511737089201878,
1010
+ "grad_norm": 0.44408252888412136,
1011
+ "learning_rate": 4.461803412021314e-05,
1012
+ "loss": 1.886,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.7565392354124748,
1017
+ "grad_norm": 0.5189286834612553,
1018
+ "learning_rate": 4.4526009948796703e-05,
1019
+ "loss": 1.8266,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.7565392354124748,
1024
+ "eval_loss": 2.1618716716766357,
1025
+ "eval_runtime": 403.938,
1026
+ "eval_samples_per_second": 6.31,
1027
+ "eval_steps_per_second": 0.79,
1028
+ "step": 141
1029
+ },
1030
+ {
1031
+ "epoch": 0.7619047619047619,
1032
+ "grad_norm": 0.4334524920814895,
1033
+ "learning_rate": 4.4433302301893987e-05,
1034
+ "loss": 1.8863,
1035
+ "step": 142
1036
+ },
1037
+ {
1038
+ "epoch": 0.7672702883970489,
1039
+ "grad_norm": 0.4809144135248221,
1040
+ "learning_rate": 4.433991442458188e-05,
1041
+ "loss": 1.9075,
1042
+ "step": 143
1043
+ },
1044
+ {
1045
+ "epoch": 0.772635814889336,
1046
+ "grad_norm": 0.5258910256081301,
1047
+ "learning_rate": 4.4245849585747654e-05,
1048
+ "loss": 1.9616,
1049
+ "step": 144
1050
+ },
1051
+ {
1052
+ "epoch": 0.778001341381623,
1053
+ "grad_norm": 0.5131536872616902,
1054
+ "learning_rate": 4.415111107797445e-05,
1055
+ "loss": 1.8953,
1056
+ "step": 145
1057
+ },
1058
+ {
1059
+ "epoch": 0.7833668678739101,
1060
+ "grad_norm": 0.45216150555891305,
1061
+ "learning_rate": 4.4055702217426084e-05,
1062
+ "loss": 1.8867,
1063
+ "step": 146
1064
+ },
1065
+ {
1066
+ "epoch": 0.7887323943661971,
1067
+ "grad_norm": 0.47907057676705184,
1068
+ "learning_rate": 4.395962634373097e-05,
1069
+ "loss": 1.8335,
1070
+ "step": 147
1071
+ },
1072
+ {
1073
+ "epoch": 0.7940979208584842,
1074
+ "grad_norm": 0.4945502094720473,
1075
+ "learning_rate": 4.386288681986516e-05,
1076
+ "loss": 1.9218,
1077
+ "step": 148
1078
+ },
1079
+ {
1080
+ "epoch": 0.7994634473507712,
1081
+ "grad_norm": 0.4595838282230734,
1082
+ "learning_rate": 4.376548703203474e-05,
1083
+ "loss": 1.8603,
1084
+ "step": 149
1085
+ },
1086
+ {
1087
+ "epoch": 0.8048289738430584,
1088
+ "grad_norm": 0.45448249598162854,
1089
+ "learning_rate": 4.36674303895572e-05,
1090
+ "loss": 1.8615,
1091
+ "step": 150
1092
+ },
1093
+ {
1094
+ "epoch": 0.8101945003353455,
1095
+ "grad_norm": 0.4238860646236377,
1096
+ "learning_rate": 4.356872032474213e-05,
1097
+ "loss": 1.8374,
1098
+ "step": 151
1099
+ },
1100
+ {
1101
+ "epoch": 0.8155600268276325,
1102
+ "grad_norm": 0.4519762198634726,
1103
+ "learning_rate": 4.34693602927711e-05,
1104
+ "loss": 1.8174,
1105
+ "step": 152
1106
+ },
1107
+ {
1108
+ "epoch": 0.8209255533199196,
1109
+ "grad_norm": 0.45624612554196736,
1110
+ "learning_rate": 4.336935377157668e-05,
1111
+ "loss": 1.9105,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.8262910798122066,
1116
+ "grad_norm": 0.4076679531263349,
1117
+ "learning_rate": 4.326870426172075e-05,
1118
+ "loss": 1.8865,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.8316566063044937,
1123
+ "grad_norm": 0.4514412896189259,
1124
+ "learning_rate": 4.3167415286271905e-05,
1125
+ "loss": 1.9272,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.8370221327967807,
1130
+ "grad_norm": 0.40433175857719245,
1131
+ "learning_rate": 4.3065490390682186e-05,
1132
+ "loss": 1.814,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 0.8423876592890678,
1137
+ "grad_norm": 0.4159285646615437,
1138
+ "learning_rate": 4.296293314266294e-05,
1139
+ "loss": 1.8064,
1140
+ "step": 157
1141
+ },
1142
+ {
1143
+ "epoch": 0.8477531857813548,
1144
+ "grad_norm": 0.4270220599999327,
1145
+ "learning_rate": 4.2859747132060006e-05,
1146
+ "loss": 1.7482,
1147
+ "step": 158
1148
+ },
1149
+ {
1150
+ "epoch": 0.8531187122736419,
1151
+ "grad_norm": 0.5162993182758251,
1152
+ "learning_rate": 4.275593597072796e-05,
1153
+ "loss": 1.7763,
1154
+ "step": 159
1155
+ },
1156
+ {
1157
+ "epoch": 0.8584842387659289,
1158
+ "grad_norm": 0.4065368416357515,
1159
+ "learning_rate": 4.265150329240376e-05,
1160
+ "loss": 1.885,
1161
+ "step": 160
1162
+ },
1163
+ {
1164
+ "epoch": 0.863849765258216,
1165
+ "grad_norm": 0.5523980888304064,
1166
+ "learning_rate": 4.2546452752579536e-05,
1167
+ "loss": 1.971,
1168
+ "step": 161
1169
+ },
1170
+ {
1171
+ "epoch": 0.869215291750503,
1172
+ "grad_norm": 0.4121779650999884,
1173
+ "learning_rate": 4.2440788028374624e-05,
1174
+ "loss": 1.9301,
1175
+ "step": 162
1176
+ },
1177
+ {
1178
+ "epoch": 0.8745808182427901,
1179
+ "grad_norm": 0.4612759438023989,
1180
+ "learning_rate": 4.233451281840686e-05,
1181
+ "loss": 1.8564,
1182
+ "step": 163
1183
+ },
1184
+ {
1185
+ "epoch": 0.8799463447350772,
1186
+ "grad_norm": 0.3977527412707747,
1187
+ "learning_rate": 4.2227630842663136e-05,
1188
+ "loss": 1.8876,
1189
+ "step": 164
1190
+ },
1191
+ {
1192
+ "epoch": 0.8853118712273642,
1193
+ "grad_norm": 0.45276964005664955,
1194
+ "learning_rate": 4.212014584236914e-05,
1195
+ "loss": 1.8098,
1196
+ "step": 165
1197
+ },
1198
+ {
1199
+ "epoch": 0.8906773977196513,
1200
+ "grad_norm": 0.37349476483277844,
1201
+ "learning_rate": 4.2012061579858465e-05,
1202
+ "loss": 1.8247,
1203
+ "step": 166
1204
+ },
1205
+ {
1206
+ "epoch": 0.8960429242119383,
1207
+ "grad_norm": 0.39676844111499676,
1208
+ "learning_rate": 4.190338183844086e-05,
1209
+ "loss": 1.914,
1210
+ "step": 167
1211
+ },
1212
+ {
1213
+ "epoch": 0.9014084507042254,
1214
+ "grad_norm": 0.3625691966854791,
1215
+ "learning_rate": 4.1794110422269825e-05,
1216
+ "loss": 1.92,
1217
+ "step": 168
1218
+ },
1219
+ {
1220
+ "epoch": 0.9067739771965124,
1221
+ "grad_norm": 0.39688352111910685,
1222
+ "learning_rate": 4.168425115620944e-05,
1223
+ "loss": 1.8103,
1224
+ "step": 169
1225
+ },
1226
+ {
1227
+ "epoch": 0.9121395036887995,
1228
+ "grad_norm": 0.3737222783168723,
1229
+ "learning_rate": 4.157380788570053e-05,
1230
+ "loss": 1.8215,
1231
+ "step": 170
1232
+ },
1233
+ {
1234
+ "epoch": 0.9175050301810865,
1235
+ "grad_norm": 0.43842445138079555,
1236
+ "learning_rate": 4.146278447662597e-05,
1237
+ "loss": 1.8029,
1238
+ "step": 171
1239
+ },
1240
+ {
1241
+ "epoch": 0.9228705566733736,
1242
+ "grad_norm": 0.47414715687042996,
1243
+ "learning_rate": 4.1351184815175456e-05,
1244
+ "loss": 1.8974,
1245
+ "step": 172
1246
+ },
1247
+ {
1248
+ "epoch": 0.9282360831656606,
1249
+ "grad_norm": 0.4146539941665616,
1250
+ "learning_rate": 4.123901280770945e-05,
1251
+ "loss": 1.8871,
1252
+ "step": 173
1253
+ },
1254
+ {
1255
+ "epoch": 0.9336016096579477,
1256
+ "grad_norm": 0.4088656394439229,
1257
+ "learning_rate": 4.112627238062239e-05,
1258
+ "loss": 1.8594,
1259
+ "step": 174
1260
+ },
1261
+ {
1262
+ "epoch": 0.9389671361502347,
1263
+ "grad_norm": 0.40239314445747604,
1264
+ "learning_rate": 4.101296748020533e-05,
1265
+ "loss": 1.8207,
1266
+ "step": 175
1267
+ },
1268
+ {
1269
+ "epoch": 0.9443326626425218,
1270
+ "grad_norm": 0.36389736696587754,
1271
+ "learning_rate": 4.089910207250778e-05,
1272
+ "loss": 1.8423,
1273
+ "step": 176
1274
+ },
1275
+ {
1276
+ "epoch": 0.9496981891348089,
1277
+ "grad_norm": 0.41161031740209597,
1278
+ "learning_rate": 4.0784680143198836e-05,
1279
+ "loss": 1.8954,
1280
+ "step": 177
1281
+ },
1282
+ {
1283
+ "epoch": 0.9550637156270959,
1284
+ "grad_norm": 0.3613771597005119,
1285
+ "learning_rate": 4.0669705697427754e-05,
1286
+ "loss": 1.9036,
1287
+ "step": 178
1288
+ },
1289
+ {
1290
+ "epoch": 0.960429242119383,
1291
+ "grad_norm": 0.36880689305175635,
1292
+ "learning_rate": 4.055418275968368e-05,
1293
+ "loss": 1.8676,
1294
+ "step": 179
1295
+ },
1296
+ {
1297
+ "epoch": 0.96579476861167,
1298
+ "grad_norm": 0.3892009514188599,
1299
+ "learning_rate": 4.04381153736548e-05,
1300
+ "loss": 1.8545,
1301
+ "step": 180
1302
+ },
1303
+ {
1304
+ "epoch": 0.9711602951039571,
1305
+ "grad_norm": 0.39386413560247385,
1306
+ "learning_rate": 4.032150760208684e-05,
1307
+ "loss": 1.9306,
1308
+ "step": 181
1309
+ },
1310
+ {
1311
+ "epoch": 0.9765258215962441,
1312
+ "grad_norm": 0.38085985815329654,
1313
+ "learning_rate": 4.02043635266408e-05,
1314
+ "loss": 1.9339,
1315
+ "step": 182
1316
+ },
1317
+ {
1318
+ "epoch": 0.9818913480885312,
1319
+ "grad_norm": 0.3502551322824309,
1320
+ "learning_rate": 4.00866872477501e-05,
1321
+ "loss": 1.8438,
1322
+ "step": 183
1323
+ },
1324
+ {
1325
+ "epoch": 0.9872568745808182,
1326
+ "grad_norm": 0.42923155491093273,
1327
+ "learning_rate": 3.9968482884477075e-05,
1328
+ "loss": 1.8326,
1329
+ "step": 184
1330
+ },
1331
+ {
1332
+ "epoch": 0.9926224010731053,
1333
+ "grad_norm": 0.37629854526288287,
1334
+ "learning_rate": 3.9849754574368766e-05,
1335
+ "loss": 1.8521,
1336
+ "step": 185
1337
+ },
1338
+ {
1339
+ "epoch": 0.9979879275653923,
1340
+ "grad_norm": 0.43648587047407056,
1341
+ "learning_rate": 3.973050647331209e-05,
1342
+ "loss": 1.9192,
1343
+ "step": 186
1344
+ },
1345
+ {
1346
+ "epoch": 1.0053655264922872,
1347
+ "grad_norm": 1.1037688215019685,
1348
+ "learning_rate": 3.9610742755388406e-05,
1349
+ "loss": 3.5179,
1350
+ "step": 187
1351
+ },
1352
+ {
1353
+ "epoch": 1.010731052984574,
1354
+ "grad_norm": 0.5315167109100908,
1355
+ "learning_rate": 3.949046761272736e-05,
1356
+ "loss": 1.5997,
1357
+ "step": 188
1358
+ },
1359
+ {
1360
+ "epoch": 1.010731052984574,
1361
+ "eval_loss": 2.160255193710327,
1362
+ "eval_runtime": 403.1754,
1363
+ "eval_samples_per_second": 6.322,
1364
+ "eval_steps_per_second": 0.791,
1365
+ "step": 188
1366
+ },
1367
+ {
1368
+ "epoch": 1.0160965794768613,
1369
+ "grad_norm": 1.034163349005432,
1370
+ "learning_rate": 3.9369685255360175e-05,
1371
+ "loss": 1.6376,
1372
+ "step": 189
1373
+ },
1374
+ {
1375
+ "epoch": 1.0214621059691482,
1376
+ "grad_norm": 0.5297370695526916,
1377
+ "learning_rate": 3.924839991107229e-05,
1378
+ "loss": 1.5196,
1379
+ "step": 190
1380
+ },
1381
+ {
1382
+ "epoch": 1.0268276324614354,
1383
+ "grad_norm": 0.49978902813452,
1384
+ "learning_rate": 3.9126615825255364e-05,
1385
+ "loss": 1.4628,
1386
+ "step": 191
1387
+ },
1388
+ {
1389
+ "epoch": 1.0321931589537223,
1390
+ "grad_norm": 0.5207450843338,
1391
+ "learning_rate": 3.900433726075865e-05,
1392
+ "loss": 1.5808,
1393
+ "step": 192
1394
+ },
1395
+ {
1396
+ "epoch": 1.0375586854460095,
1397
+ "grad_norm": 0.5502855697944308,
1398
+ "learning_rate": 3.888156849773985e-05,
1399
+ "loss": 1.5445,
1400
+ "step": 193
1401
+ },
1402
+ {
1403
+ "epoch": 1.0429242119382964,
1404
+ "grad_norm": 0.5175112784168553,
1405
+ "learning_rate": 3.875831383351519e-05,
1406
+ "loss": 1.6456,
1407
+ "step": 194
1408
+ },
1409
+ {
1410
+ "epoch": 1.0482897384305836,
1411
+ "grad_norm": 0.4649959629509902,
1412
+ "learning_rate": 3.863457758240912e-05,
1413
+ "loss": 1.5508,
1414
+ "step": 195
1415
+ },
1416
+ {
1417
+ "epoch": 1.0536552649228705,
1418
+ "grad_norm": 0.48136239187851326,
1419
+ "learning_rate": 3.851036407560319e-05,
1420
+ "loss": 1.4848,
1421
+ "step": 196
1422
+ },
1423
+ {
1424
+ "epoch": 1.0590207914151577,
1425
+ "grad_norm": 0.48389312973032594,
1426
+ "learning_rate": 3.838567766098452e-05,
1427
+ "loss": 1.5123,
1428
+ "step": 197
1429
+ },
1430
+ {
1431
+ "epoch": 1.0643863179074446,
1432
+ "grad_norm": 0.45180450785183063,
1433
+ "learning_rate": 3.826052270299356e-05,
1434
+ "loss": 1.5807,
1435
+ "step": 198
1436
+ },
1437
+ {
1438
+ "epoch": 1.0697518443997318,
1439
+ "grad_norm": 0.48079670948977926,
1440
+ "learning_rate": 3.813490358247137e-05,
1441
+ "loss": 1.5426,
1442
+ "step": 199
1443
+ },
1444
+ {
1445
+ "epoch": 1.0751173708920188,
1446
+ "grad_norm": 0.510291013526601,
1447
+ "learning_rate": 3.800882469650621e-05,
1448
+ "loss": 1.5845,
1449
+ "step": 200
1450
+ },
1451
+ {
1452
+ "epoch": 1.080482897384306,
1453
+ "grad_norm": 0.41649615075440893,
1454
+ "learning_rate": 3.78822904582797e-05,
1455
+ "loss": 1.5003,
1456
+ "step": 201
1457
+ },
1458
+ {
1459
+ "epoch": 1.0858484238765929,
1460
+ "grad_norm": 0.4499681852447958,
1461
+ "learning_rate": 3.7755305296912276e-05,
1462
+ "loss": 1.4751,
1463
+ "step": 202
1464
+ },
1465
+ {
1466
+ "epoch": 1.09121395036888,
1467
+ "grad_norm": 0.5088284534955508,
1468
+ "learning_rate": 3.762787365730821e-05,
1469
+ "loss": 1.5982,
1470
+ "step": 203
1471
+ },
1472
+ {
1473
+ "epoch": 1.096579476861167,
1474
+ "grad_norm": 0.3929831451008196,
1475
+ "learning_rate": 3.7500000000000003e-05,
1476
+ "loss": 1.4991,
1477
+ "step": 204
1478
+ },
1479
+ {
1480
+ "epoch": 1.1019450033534541,
1481
+ "grad_norm": 0.41107315409379536,
1482
+ "learning_rate": 3.7371688800992235e-05,
1483
+ "loss": 1.4837,
1484
+ "step": 205
1485
+ },
1486
+ {
1487
+ "epoch": 1.107310529845741,
1488
+ "grad_norm": 0.415588978346341,
1489
+ "learning_rate": 3.7242944551604914e-05,
1490
+ "loss": 1.5345,
1491
+ "step": 206
1492
+ },
1493
+ {
1494
+ "epoch": 1.1126760563380282,
1495
+ "grad_norm": 0.4044749735529877,
1496
+ "learning_rate": 3.711377175831626e-05,
1497
+ "loss": 1.4545,
1498
+ "step": 207
1499
+ },
1500
+ {
1501
+ "epoch": 1.1180415828303152,
1502
+ "grad_norm": 0.44865460732176465,
1503
+ "learning_rate": 3.698417494260494e-05,
1504
+ "loss": 1.6391,
1505
+ "step": 208
1506
+ },
1507
+ {
1508
+ "epoch": 1.1234071093226023,
1509
+ "grad_norm": 0.4479424002899852,
1510
+ "learning_rate": 3.685415864079185e-05,
1511
+ "loss": 1.508,
1512
+ "step": 209
1513
+ },
1514
+ {
1515
+ "epoch": 1.1287726358148893,
1516
+ "grad_norm": 0.429927217929734,
1517
+ "learning_rate": 3.6723727403881284e-05,
1518
+ "loss": 1.5501,
1519
+ "step": 210
1520
+ },
1521
+ {
1522
+ "epoch": 1.1341381623071765,
1523
+ "grad_norm": 0.5044115066105113,
1524
+ "learning_rate": 3.659288579740163e-05,
1525
+ "loss": 1.5615,
1526
+ "step": 211
1527
+ },
1528
+ {
1529
+ "epoch": 1.1395036887994634,
1530
+ "grad_norm": 0.424575600191598,
1531
+ "learning_rate": 3.646163840124561e-05,
1532
+ "loss": 1.4835,
1533
+ "step": 212
1534
+ },
1535
+ {
1536
+ "epoch": 1.1448692152917506,
1537
+ "grad_norm": 0.43480586168977786,
1538
+ "learning_rate": 3.632998980950993e-05,
1539
+ "loss": 1.5371,
1540
+ "step": 213
1541
+ },
1542
+ {
1543
+ "epoch": 1.1502347417840375,
1544
+ "grad_norm": 0.40322150224409975,
1545
+ "learning_rate": 3.619794463033447e-05,
1546
+ "loss": 1.5376,
1547
+ "step": 214
1548
+ },
1549
+ {
1550
+ "epoch": 1.1556002682763247,
1551
+ "grad_norm": 0.42637706485283583,
1552
+ "learning_rate": 3.6065507485741e-05,
1553
+ "loss": 1.5631,
1554
+ "step": 215
1555
+ },
1556
+ {
1557
+ "epoch": 1.1609657947686116,
1558
+ "grad_norm": 0.4259143981435151,
1559
+ "learning_rate": 3.593268301147139e-05,
1560
+ "loss": 1.5741,
1561
+ "step": 216
1562
+ },
1563
+ {
1564
+ "epoch": 1.1663313212608988,
1565
+ "grad_norm": 0.45826011738708783,
1566
+ "learning_rate": 3.5799475856825326e-05,
1567
+ "loss": 1.5298,
1568
+ "step": 217
1569
+ },
1570
+ {
1571
+ "epoch": 1.1716968477531857,
1572
+ "grad_norm": 0.4030875431169561,
1573
+ "learning_rate": 3.566589068449761e-05,
1574
+ "loss": 1.5574,
1575
+ "step": 218
1576
+ },
1577
+ {
1578
+ "epoch": 1.1770623742454729,
1579
+ "grad_norm": 0.409604426981432,
1580
+ "learning_rate": 3.5531932170414896e-05,
1581
+ "loss": 1.4859,
1582
+ "step": 219
1583
+ },
1584
+ {
1585
+ "epoch": 1.1824279007377598,
1586
+ "grad_norm": 0.37439697455127857,
1587
+ "learning_rate": 3.539760500357207e-05,
1588
+ "loss": 1.5221,
1589
+ "step": 220
1590
+ },
1591
+ {
1592
+ "epoch": 1.187793427230047,
1593
+ "grad_norm": 0.3600455315943667,
1594
+ "learning_rate": 3.5262913885868066e-05,
1595
+ "loss": 1.479,
1596
+ "step": 221
1597
+ },
1598
+ {
1599
+ "epoch": 1.193158953722334,
1600
+ "grad_norm": 0.39515964344444054,
1601
+ "learning_rate": 3.512786353194134e-05,
1602
+ "loss": 1.6002,
1603
+ "step": 222
1604
+ },
1605
+ {
1606
+ "epoch": 1.198524480214621,
1607
+ "grad_norm": 0.3903215407425732,
1608
+ "learning_rate": 3.49924586690048e-05,
1609
+ "loss": 1.5627,
1610
+ "step": 223
1611
+ },
1612
+ {
1613
+ "epoch": 1.203890006706908,
1614
+ "grad_norm": 0.3863928913911809,
1615
+ "learning_rate": 3.485670403668036e-05,
1616
+ "loss": 1.4894,
1617
+ "step": 224
1618
+ },
1619
+ {
1620
+ "epoch": 1.2092555331991952,
1621
+ "grad_norm": 0.39120322752660747,
1622
+ "learning_rate": 3.472060438683302e-05,
1623
+ "loss": 1.5576,
1624
+ "step": 225
1625
+ },
1626
+ {
1627
+ "epoch": 1.2146210596914822,
1628
+ "grad_norm": 0.4012276022035902,
1629
+ "learning_rate": 3.4584164483404544e-05,
1630
+ "loss": 1.5661,
1631
+ "step": 226
1632
+ },
1633
+ {
1634
+ "epoch": 1.2199865861837693,
1635
+ "grad_norm": 0.359333036872216,
1636
+ "learning_rate": 3.444738910224671e-05,
1637
+ "loss": 1.6043,
1638
+ "step": 227
1639
+ },
1640
+ {
1641
+ "epoch": 1.2253521126760563,
1642
+ "grad_norm": 0.4169926695855886,
1643
+ "learning_rate": 3.431028303095415e-05,
1644
+ "loss": 1.5162,
1645
+ "step": 228
1646
+ },
1647
+ {
1648
+ "epoch": 1.2307176391683434,
1649
+ "grad_norm": 0.3666243644496504,
1650
+ "learning_rate": 3.417285106869673e-05,
1651
+ "loss": 1.5182,
1652
+ "step": 229
1653
+ },
1654
+ {
1655
+ "epoch": 1.2360831656606304,
1656
+ "grad_norm": 0.3732640706992433,
1657
+ "learning_rate": 3.403509802605159e-05,
1658
+ "loss": 1.6136,
1659
+ "step": 230
1660
+ },
1661
+ {
1662
+ "epoch": 1.2414486921529175,
1663
+ "grad_norm": 0.38533992909636827,
1664
+ "learning_rate": 3.389702872483477e-05,
1665
+ "loss": 1.5763,
1666
+ "step": 231
1667
+ },
1668
+ {
1669
+ "epoch": 1.2468142186452045,
1670
+ "grad_norm": 0.3621197211070038,
1671
+ "learning_rate": 3.3758647997932417e-05,
1672
+ "loss": 1.5977,
1673
+ "step": 232
1674
+ },
1675
+ {
1676
+ "epoch": 1.2521797451374916,
1677
+ "grad_norm": 0.39624430912627595,
1678
+ "learning_rate": 3.361996068913159e-05,
1679
+ "loss": 1.5794,
1680
+ "step": 233
1681
+ },
1682
+ {
1683
+ "epoch": 1.2575452716297786,
1684
+ "grad_norm": 0.38404789088021773,
1685
+ "learning_rate": 3.348097165295076e-05,
1686
+ "loss": 1.5633,
1687
+ "step": 234
1688
+ },
1689
+ {
1690
+ "epoch": 1.2629107981220657,
1691
+ "grad_norm": 0.35832957307552504,
1692
+ "learning_rate": 3.3341685754469856e-05,
1693
+ "loss": 1.5134,
1694
+ "step": 235
1695
+ },
1696
+ {
1697
+ "epoch": 1.2629107981220657,
1698
+ "eval_loss": 2.15519642829895,
1699
+ "eval_runtime": 403.4218,
1700
+ "eval_samples_per_second": 6.318,
1701
+ "eval_steps_per_second": 0.791,
1702
+ "step": 235
1703
+ },
1704
+ {
1705
+ "epoch": 1.268276324614353,
1706
+ "grad_norm": 0.34366404066845024,
1707
+ "learning_rate": 3.320210786915997e-05,
1708
+ "loss": 1.4825,
1709
+ "step": 236
1710
+ },
1711
+ {
1712
+ "epoch": 1.2736418511066399,
1713
+ "grad_norm": 0.45636968737684863,
1714
+ "learning_rate": 3.3062242882712724e-05,
1715
+ "loss": 1.5146,
1716
+ "step": 237
1717
+ },
1718
+ {
1719
+ "epoch": 1.2790073775989268,
1720
+ "grad_norm": 0.3804000236233779,
1721
+ "learning_rate": 3.2922095690869224e-05,
1722
+ "loss": 1.5501,
1723
+ "step": 238
1724
+ },
1725
+ {
1726
+ "epoch": 1.284372904091214,
1727
+ "grad_norm": 0.3699794774550946,
1728
+ "learning_rate": 3.278167119924872e-05,
1729
+ "loss": 1.4956,
1730
+ "step": 239
1731
+ },
1732
+ {
1733
+ "epoch": 1.2897384305835011,
1734
+ "grad_norm": 0.38134052511434596,
1735
+ "learning_rate": 3.2640974323176846e-05,
1736
+ "loss": 1.4926,
1737
+ "step": 240
1738
+ },
1739
+ {
1740
+ "epoch": 1.295103957075788,
1741
+ "grad_norm": 0.4001577679575819,
1742
+ "learning_rate": 3.2500009987513655e-05,
1743
+ "loss": 1.5339,
1744
+ "step": 241
1745
+ },
1746
+ {
1747
+ "epoch": 1.300469483568075,
1748
+ "grad_norm": 0.33599496371938614,
1749
+ "learning_rate": 3.235878312648112e-05,
1750
+ "loss": 1.3329,
1751
+ "step": 242
1752
+ },
1753
+ {
1754
+ "epoch": 1.3058350100603622,
1755
+ "grad_norm": 0.3780832169945631,
1756
+ "learning_rate": 3.2217298683490525e-05,
1757
+ "loss": 1.5711,
1758
+ "step": 243
1759
+ },
1760
+ {
1761
+ "epoch": 1.3112005365526493,
1762
+ "grad_norm": 0.37979912787014874,
1763
+ "learning_rate": 3.207556161096935e-05,
1764
+ "loss": 1.559,
1765
+ "step": 244
1766
+ },
1767
+ {
1768
+ "epoch": 1.3165660630449363,
1769
+ "grad_norm": 0.34013678855872914,
1770
+ "learning_rate": 3.193357687018798e-05,
1771
+ "loss": 1.5112,
1772
+ "step": 245
1773
+ },
1774
+ {
1775
+ "epoch": 1.3219315895372232,
1776
+ "grad_norm": 0.3761770494247479,
1777
+ "learning_rate": 3.179134943108597e-05,
1778
+ "loss": 1.5195,
1779
+ "step": 246
1780
+ },
1781
+ {
1782
+ "epoch": 1.3272971160295104,
1783
+ "grad_norm": 0.36046502801340735,
1784
+ "learning_rate": 3.164888427209818e-05,
1785
+ "loss": 1.4648,
1786
+ "step": 247
1787
+ },
1788
+ {
1789
+ "epoch": 1.3326626425217976,
1790
+ "grad_norm": 0.4163102856970103,
1791
+ "learning_rate": 3.150618637998041e-05,
1792
+ "loss": 1.6488,
1793
+ "step": 248
1794
+ },
1795
+ {
1796
+ "epoch": 1.3380281690140845,
1797
+ "grad_norm": 0.37250576413738173,
1798
+ "learning_rate": 3.136326074963494e-05,
1799
+ "loss": 1.5966,
1800
+ "step": 249
1801
+ },
1802
+ {
1803
+ "epoch": 1.3433936955063714,
1804
+ "grad_norm": 0.3717314773044194,
1805
+ "learning_rate": 3.122011238393562e-05,
1806
+ "loss": 1.4555,
1807
+ "step": 250
1808
+ },
1809
+ {
1810
+ "epoch": 1.3487592219986586,
1811
+ "grad_norm": 0.4233051858413458,
1812
+ "learning_rate": 3.1076746293552786e-05,
1813
+ "loss": 1.5931,
1814
+ "step": 251
1815
+ },
1816
+ {
1817
+ "epoch": 1.3541247484909458,
1818
+ "grad_norm": 0.3538900779699424,
1819
+ "learning_rate": 3.093316749677788e-05,
1820
+ "loss": 1.5041,
1821
+ "step": 252
1822
+ },
1823
+ {
1824
+ "epoch": 1.3594902749832327,
1825
+ "grad_norm": 0.4239252371757693,
1826
+ "learning_rate": 3.078938101934773e-05,
1827
+ "loss": 1.5986,
1828
+ "step": 253
1829
+ },
1830
+ {
1831
+ "epoch": 1.3648558014755197,
1832
+ "grad_norm": 0.40455165331708126,
1833
+ "learning_rate": 3.064539189426874e-05,
1834
+ "loss": 1.5956,
1835
+ "step": 254
1836
+ },
1837
+ {
1838
+ "epoch": 1.3702213279678068,
1839
+ "grad_norm": 0.35682161127333073,
1840
+ "learning_rate": 3.050120516164062e-05,
1841
+ "loss": 1.4983,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 1.375586854460094,
1846
+ "grad_norm": 0.366685178903664,
1847
+ "learning_rate": 3.0356825868480017e-05,
1848
+ "loss": 1.6384,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 1.380952380952381,
1853
+ "grad_norm": 0.3615423341669086,
1854
+ "learning_rate": 3.0212259068543837e-05,
1855
+ "loss": 1.4734,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 1.3863179074446679,
1860
+ "grad_norm": 0.3469703962175405,
1861
+ "learning_rate": 3.006750982215234e-05,
1862
+ "loss": 1.4386,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 1.391683433936955,
1867
+ "grad_norm": 0.3757992095280783,
1868
+ "learning_rate": 2.9922583196012037e-05,
1869
+ "loss": 1.5479,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 1.3970489604292422,
1874
+ "grad_norm": 0.3696529318558144,
1875
+ "learning_rate": 2.9777484263038306e-05,
1876
+ "loss": 1.4613,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 1.4024144869215291,
1881
+ "grad_norm": 0.36763443681114544,
1882
+ "learning_rate": 2.9632218102177862e-05,
1883
+ "loss": 1.4707,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 1.4077800134138163,
1888
+ "grad_norm": 0.3330227260573098,
1889
+ "learning_rate": 2.9486789798230917e-05,
1890
+ "loss": 1.5196,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 1.4131455399061033,
1895
+ "grad_norm": 0.3401075705229897,
1896
+ "learning_rate": 2.9341204441673266e-05,
1897
+ "loss": 1.5713,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 1.4185110663983904,
1902
+ "grad_norm": 0.38589937071982083,
1903
+ "learning_rate": 2.9195467128478044e-05,
1904
+ "loss": 1.5658,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 1.4238765928906774,
1909
+ "grad_norm": 0.36187499541792045,
1910
+ "learning_rate": 2.9049582959937392e-05,
1911
+ "loss": 1.5645,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 1.4292421193829645,
1916
+ "grad_norm": 0.3727884692802974,
1917
+ "learning_rate": 2.8903557042483887e-05,
1918
+ "loss": 1.5195,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 1.4346076458752515,
1923
+ "grad_norm": 0.3423144867083204,
1924
+ "learning_rate": 2.875739448751176e-05,
1925
+ "loss": 1.4897,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 1.4399731723675386,
1930
+ "grad_norm": 0.3809610047831763,
1931
+ "learning_rate": 2.8611100411198037e-05,
1932
+ "loss": 1.6107,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 1.4453386988598256,
1937
+ "grad_norm": 0.3466660038008262,
1938
+ "learning_rate": 2.8464679934323424e-05,
1939
+ "loss": 1.5203,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 1.4507042253521127,
1944
+ "grad_norm": 0.3858219936970091,
1945
+ "learning_rate": 2.8318138182093052e-05,
1946
+ "loss": 1.5211,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 1.4560697518443997,
1951
+ "grad_norm": 0.3457606288538911,
1952
+ "learning_rate": 2.8171480283957118e-05,
1953
+ "loss": 1.4825,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 1.4614352783366868,
1958
+ "grad_norm": 0.4097169980235964,
1959
+ "learning_rate": 2.80247113734313e-05,
1960
+ "loss": 1.5276,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 1.4668008048289738,
1965
+ "grad_norm": 0.39937404860513825,
1966
+ "learning_rate": 2.7877836587917072e-05,
1967
+ "loss": 1.5022,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 1.472166331321261,
1972
+ "grad_norm": 0.36070057912441533,
1973
+ "learning_rate": 2.773086106852192e-05,
1974
+ "loss": 1.4587,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 1.477531857813548,
1979
+ "grad_norm": 0.4013616820391148,
1980
+ "learning_rate": 2.7583789959879303e-05,
1981
+ "loss": 1.5908,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 1.482897384305835,
1986
+ "grad_norm": 0.4150531718746046,
1987
+ "learning_rate": 2.7436628409968664e-05,
1988
+ "loss": 1.4511,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 1.488262910798122,
1993
+ "grad_norm": 0.38578622280087393,
1994
+ "learning_rate": 2.728938156993517e-05,
1995
+ "loss": 1.5407,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 1.4936284372904092,
2000
+ "grad_norm": 0.3844783258031986,
2001
+ "learning_rate": 2.7142054593909422e-05,
2002
+ "loss": 1.5349,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 1.4989939637826961,
2007
+ "grad_norm": 0.4144431176495637,
2008
+ "learning_rate": 2.6994652638827078e-05,
2009
+ "loss": 1.602,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 1.5043594902749833,
2014
+ "grad_norm": 0.402711914294424,
2015
+ "learning_rate": 2.6847180864248283e-05,
2016
+ "loss": 1.5902,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 1.5097250167672702,
2021
+ "grad_norm": 0.3378799881196754,
2022
+ "learning_rate": 2.6699644432177112e-05,
2023
+ "loss": 1.5514,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 1.5150905432595574,
2028
+ "grad_norm": 0.4113537256498264,
2029
+ "learning_rate": 2.655204850688085e-05,
2030
+ "loss": 1.4614,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 1.5150905432595574,
2035
+ "eval_loss": 2.1373159885406494,
2036
+ "eval_runtime": 403.7482,
2037
+ "eval_samples_per_second": 6.313,
2038
+ "eval_steps_per_second": 0.79,
2039
+ "step": 282
2040
+ },
2041
+ {
2042
+ "epoch": 1.5204560697518446,
2043
+ "grad_norm": 0.3645339916373801,
2044
+ "learning_rate": 2.6404398254709284e-05,
2045
+ "loss": 1.4716,
2046
+ "step": 283
2047
+ },
2048
+ {
2049
+ "epoch": 1.5258215962441315,
2050
+ "grad_norm": 0.3662916121671904,
2051
+ "learning_rate": 2.625669884391377e-05,
2052
+ "loss": 1.5145,
2053
+ "step": 284
2054
+ },
2055
+ {
2056
+ "epoch": 1.5311871227364184,
2057
+ "grad_norm": 0.4062086365442157,
2058
+ "learning_rate": 2.610895544446641e-05,
2059
+ "loss": 1.5513,
2060
+ "step": 285
2061
+ },
2062
+ {
2063
+ "epoch": 1.5365526492287056,
2064
+ "grad_norm": 0.3693755738805308,
2065
+ "learning_rate": 2.596117322787907e-05,
2066
+ "loss": 1.5498,
2067
+ "step": 286
2068
+ },
2069
+ {
2070
+ "epoch": 1.5419181757209928,
2071
+ "grad_norm": 0.3589026792727439,
2072
+ "learning_rate": 2.5813357367022305e-05,
2073
+ "loss": 1.5211,
2074
+ "step": 287
2075
+ },
2076
+ {
2077
+ "epoch": 1.5472837022132797,
2078
+ "grad_norm": 0.38017444587432575,
2079
+ "learning_rate": 2.566551303594437e-05,
2080
+ "loss": 1.5342,
2081
+ "step": 288
2082
+ },
2083
+ {
2084
+ "epoch": 1.5526492287055667,
2085
+ "grad_norm": 0.3537300073106448,
2086
+ "learning_rate": 2.551764540969005e-05,
2087
+ "loss": 1.5109,
2088
+ "step": 289
2089
+ },
2090
+ {
2091
+ "epoch": 1.5580147551978538,
2092
+ "grad_norm": 0.3752836981822812,
2093
+ "learning_rate": 2.5369759664119537e-05,
2094
+ "loss": 1.5015,
2095
+ "step": 290
2096
+ },
2097
+ {
2098
+ "epoch": 1.563380281690141,
2099
+ "grad_norm": 0.3810876452684417,
2100
+ "learning_rate": 2.5221860975727275e-05,
2101
+ "loss": 1.5686,
2102
+ "step": 291
2103
+ },
2104
+ {
2105
+ "epoch": 1.568745808182428,
2106
+ "grad_norm": 0.3688966465073692,
2107
+ "learning_rate": 2.5073954521460745e-05,
2108
+ "loss": 1.5666,
2109
+ "step": 292
2110
+ },
2111
+ {
2112
+ "epoch": 1.5741113346747149,
2113
+ "grad_norm": 0.3740373962224673,
2114
+ "learning_rate": 2.4926045478539257e-05,
2115
+ "loss": 1.5541,
2116
+ "step": 293
2117
+ },
2118
+ {
2119
+ "epoch": 1.579476861167002,
2120
+ "grad_norm": 0.4415523054571514,
2121
+ "learning_rate": 2.4778139024272724e-05,
2122
+ "loss": 1.62,
2123
+ "step": 294
2124
+ },
2125
+ {
2126
+ "epoch": 1.5848423876592892,
2127
+ "grad_norm": 0.3291219023047839,
2128
+ "learning_rate": 2.4630240335880462e-05,
2129
+ "loss": 1.5,
2130
+ "step": 295
2131
+ },
2132
+ {
2133
+ "epoch": 1.5902079141515761,
2134
+ "grad_norm": 0.39622699819562734,
2135
+ "learning_rate": 2.4482354590309962e-05,
2136
+ "loss": 1.5358,
2137
+ "step": 296
2138
+ },
2139
+ {
2140
+ "epoch": 1.595573440643863,
2141
+ "grad_norm": 0.35147156988608064,
2142
+ "learning_rate": 2.433448696405563e-05,
2143
+ "loss": 1.469,
2144
+ "step": 297
2145
+ },
2146
+ {
2147
+ "epoch": 1.6009389671361502,
2148
+ "grad_norm": 0.3458967842322882,
2149
+ "learning_rate": 2.4186642632977697e-05,
2150
+ "loss": 1.5368,
2151
+ "step": 298
2152
+ },
2153
+ {
2154
+ "epoch": 1.6063044936284374,
2155
+ "grad_norm": 0.45919555248078225,
2156
+ "learning_rate": 2.4038826772120932e-05,
2157
+ "loss": 1.6126,
2158
+ "step": 299
2159
+ },
2160
+ {
2161
+ "epoch": 1.6116700201207244,
2162
+ "grad_norm": 0.397298560652149,
2163
+ "learning_rate": 2.3891044555533588e-05,
2164
+ "loss": 1.5273,
2165
+ "step": 300
2166
+ },
2167
+ {
2168
+ "epoch": 1.6170355466130113,
2169
+ "grad_norm": 0.33950881912700964,
2170
+ "learning_rate": 2.3743301156086244e-05,
2171
+ "loss": 1.5844,
2172
+ "step": 301
2173
+ },
2174
+ {
2175
+ "epoch": 1.6224010731052985,
2176
+ "grad_norm": 0.3685147478174407,
2177
+ "learning_rate": 2.359560174529073e-05,
2178
+ "loss": 1.5306,
2179
+ "step": 302
2180
+ },
2181
+ {
2182
+ "epoch": 1.6277665995975856,
2183
+ "grad_norm": 0.3668847123777601,
2184
+ "learning_rate": 2.3447951493119152e-05,
2185
+ "loss": 1.5114,
2186
+ "step": 303
2187
+ },
2188
+ {
2189
+ "epoch": 1.6331321260898726,
2190
+ "grad_norm": 0.3532238202377609,
2191
+ "learning_rate": 2.3300355567822897e-05,
2192
+ "loss": 1.5568,
2193
+ "step": 304
2194
+ },
2195
+ {
2196
+ "epoch": 1.6384976525821595,
2197
+ "grad_norm": 0.3810645993344603,
2198
+ "learning_rate": 2.3152819135751722e-05,
2199
+ "loss": 1.5121,
2200
+ "step": 305
2201
+ },
2202
+ {
2203
+ "epoch": 1.6438631790744467,
2204
+ "grad_norm": 0.37909917013988087,
2205
+ "learning_rate": 2.300534736117292e-05,
2206
+ "loss": 1.4904,
2207
+ "step": 306
2208
+ },
2209
+ {
2210
+ "epoch": 1.6492287055667338,
2211
+ "grad_norm": 0.38885366059907706,
2212
+ "learning_rate": 2.285794540609058e-05,
2213
+ "loss": 1.5852,
2214
+ "step": 307
2215
+ },
2216
+ {
2217
+ "epoch": 1.6545942320590208,
2218
+ "grad_norm": 0.3657756765079751,
2219
+ "learning_rate": 2.2710618430064843e-05,
2220
+ "loss": 1.5529,
2221
+ "step": 308
2222
+ },
2223
+ {
2224
+ "epoch": 1.6599597585513077,
2225
+ "grad_norm": 0.3397163303578702,
2226
+ "learning_rate": 2.256337159003134e-05,
2227
+ "loss": 1.4903,
2228
+ "step": 309
2229
+ },
2230
+ {
2231
+ "epoch": 1.665325285043595,
2232
+ "grad_norm": 0.39777082501030225,
2233
+ "learning_rate": 2.2416210040120703e-05,
2234
+ "loss": 1.5159,
2235
+ "step": 310
2236
+ },
2237
+ {
2238
+ "epoch": 1.670690811535882,
2239
+ "grad_norm": 0.3658755281773237,
2240
+ "learning_rate": 2.2269138931478084e-05,
2241
+ "loss": 1.5848,
2242
+ "step": 311
2243
+ },
2244
+ {
2245
+ "epoch": 1.676056338028169,
2246
+ "grad_norm": 0.42665798217406753,
2247
+ "learning_rate": 2.2122163412082927e-05,
2248
+ "loss": 1.6133,
2249
+ "step": 312
2250
+ },
2251
+ {
2252
+ "epoch": 1.681421864520456,
2253
+ "grad_norm": 0.40969972656814363,
2254
+ "learning_rate": 2.1975288626568713e-05,
2255
+ "loss": 1.6264,
2256
+ "step": 313
2257
+ },
2258
+ {
2259
+ "epoch": 1.686787391012743,
2260
+ "grad_norm": 0.3283642172163527,
2261
+ "learning_rate": 2.1828519716042888e-05,
2262
+ "loss": 1.4812,
2263
+ "step": 314
2264
+ },
2265
+ {
2266
+ "epoch": 1.6921529175050303,
2267
+ "grad_norm": 0.4058354316614303,
2268
+ "learning_rate": 2.1681861817906954e-05,
2269
+ "loss": 1.4827,
2270
+ "step": 315
2271
+ },
2272
+ {
2273
+ "epoch": 1.6975184439973172,
2274
+ "grad_norm": 0.3466585039953347,
2275
+ "learning_rate": 2.153532006567658e-05,
2276
+ "loss": 1.5768,
2277
+ "step": 316
2278
+ },
2279
+ {
2280
+ "epoch": 1.7028839704896042,
2281
+ "grad_norm": 0.33329283442783797,
2282
+ "learning_rate": 2.1388899588801965e-05,
2283
+ "loss": 1.577,
2284
+ "step": 317
2285
+ },
2286
+ {
2287
+ "epoch": 1.7082494969818913,
2288
+ "grad_norm": 0.3513005805125947,
2289
+ "learning_rate": 2.1242605512488248e-05,
2290
+ "loss": 1.5835,
2291
+ "step": 318
2292
+ },
2293
+ {
2294
+ "epoch": 1.7136150234741785,
2295
+ "grad_norm": 0.3294934417641562,
2296
+ "learning_rate": 2.109644295751612e-05,
2297
+ "loss": 1.4758,
2298
+ "step": 319
2299
+ },
2300
+ {
2301
+ "epoch": 1.7189805499664654,
2302
+ "grad_norm": 0.33415233723527016,
2303
+ "learning_rate": 2.095041704006261e-05,
2304
+ "loss": 1.4853,
2305
+ "step": 320
2306
+ },
2307
+ {
2308
+ "epoch": 1.7243460764587524,
2309
+ "grad_norm": 0.3283653112019817,
2310
+ "learning_rate": 2.080453287152196e-05,
2311
+ "loss": 1.4554,
2312
+ "step": 321
2313
+ },
2314
+ {
2315
+ "epoch": 1.7297116029510395,
2316
+ "grad_norm": 0.32083254638693504,
2317
+ "learning_rate": 2.0658795558326743e-05,
2318
+ "loss": 1.5284,
2319
+ "step": 322
2320
+ },
2321
+ {
2322
+ "epoch": 1.7350771294433267,
2323
+ "grad_norm": 0.37794249417672565,
2324
+ "learning_rate": 2.0513210201769085e-05,
2325
+ "loss": 1.5521,
2326
+ "step": 323
2327
+ },
2328
+ {
2329
+ "epoch": 1.7404426559356136,
2330
+ "grad_norm": 0.3431657733658665,
2331
+ "learning_rate": 2.0367781897822147e-05,
2332
+ "loss": 1.5067,
2333
+ "step": 324
2334
+ },
2335
+ {
2336
+ "epoch": 1.7458081824279006,
2337
+ "grad_norm": 0.33934139214309345,
2338
+ "learning_rate": 2.0222515736961696e-05,
2339
+ "loss": 1.4801,
2340
+ "step": 325
2341
+ },
2342
+ {
2343
+ "epoch": 1.7511737089201878,
2344
+ "grad_norm": 0.3795356143714155,
2345
+ "learning_rate": 2.0077416803987965e-05,
2346
+ "loss": 1.6264,
2347
+ "step": 326
2348
+ },
2349
+ {
2350
+ "epoch": 1.756539235412475,
2351
+ "grad_norm": 0.3507795265759812,
2352
+ "learning_rate": 1.993249017784766e-05,
2353
+ "loss": 1.4967,
2354
+ "step": 327
2355
+ },
2356
+ {
2357
+ "epoch": 1.7619047619047619,
2358
+ "grad_norm": 0.3648489232026123,
2359
+ "learning_rate": 1.9787740931456165e-05,
2360
+ "loss": 1.5561,
2361
+ "step": 328
2362
+ },
2363
+ {
2364
+ "epoch": 1.7672702883970488,
2365
+ "grad_norm": 0.39626816117060937,
2366
+ "learning_rate": 1.9643174131519986e-05,
2367
+ "loss": 1.6362,
2368
+ "step": 329
2369
+ },
2370
+ {
2371
+ "epoch": 1.7672702883970488,
2372
+ "eval_loss": 2.1242423057556152,
2373
+ "eval_runtime": 403.1029,
2374
+ "eval_samples_per_second": 6.323,
2375
+ "eval_steps_per_second": 0.791,
2376
+ "step": 329
2377
+ },
2378
+ {
2379
+ "epoch": 1.772635814889336,
2380
+ "grad_norm": 0.35313890178416246,
2381
+ "learning_rate": 1.949879483835939e-05,
2382
+ "loss": 1.5147,
2383
+ "step": 330
2384
+ },
2385
+ {
2386
+ "epoch": 1.7780013413816231,
2387
+ "grad_norm": 0.3269413977690858,
2388
+ "learning_rate": 1.935460810573127e-05,
2389
+ "loss": 1.5032,
2390
+ "step": 331
2391
+ },
2392
+ {
2393
+ "epoch": 1.78336686787391,
2394
+ "grad_norm": 0.3521215800086969,
2395
+ "learning_rate": 1.9210618980652277e-05,
2396
+ "loss": 1.5734,
2397
+ "step": 332
2398
+ },
2399
+ {
2400
+ "epoch": 1.788732394366197,
2401
+ "grad_norm": 0.3813859592452455,
2402
+ "learning_rate": 1.9066832503222128e-05,
2403
+ "loss": 1.4488,
2404
+ "step": 333
2405
+ },
2406
+ {
2407
+ "epoch": 1.7940979208584842,
2408
+ "grad_norm": 0.31690523060028536,
2409
+ "learning_rate": 1.892325370644721e-05,
2410
+ "loss": 1.432,
2411
+ "step": 334
2412
+ },
2413
+ {
2414
+ "epoch": 1.7994634473507714,
2415
+ "grad_norm": 0.3364023400710833,
2416
+ "learning_rate": 1.8779887616064383e-05,
2417
+ "loss": 1.4871,
2418
+ "step": 335
2419
+ },
2420
+ {
2421
+ "epoch": 1.8048289738430583,
2422
+ "grad_norm": 0.3350534986332929,
2423
+ "learning_rate": 1.863673925036506e-05,
2424
+ "loss": 1.5055,
2425
+ "step": 336
2426
+ },
2427
+ {
2428
+ "epoch": 1.8101945003353455,
2429
+ "grad_norm": 0.33398900975140067,
2430
+ "learning_rate": 1.8493813620019594e-05,
2431
+ "loss": 1.5005,
2432
+ "step": 337
2433
+ },
2434
+ {
2435
+ "epoch": 1.8155600268276326,
2436
+ "grad_norm": 0.31906353499540524,
2437
+ "learning_rate": 1.835111572790183e-05,
2438
+ "loss": 1.4626,
2439
+ "step": 338
2440
+ },
2441
+ {
2442
+ "epoch": 1.8209255533199196,
2443
+ "grad_norm": 0.34716461667960885,
2444
+ "learning_rate": 1.8208650568914033e-05,
2445
+ "loss": 1.509,
2446
+ "step": 339
2447
+ },
2448
+ {
2449
+ "epoch": 1.8262910798122065,
2450
+ "grad_norm": 0.34582309441917697,
2451
+ "learning_rate": 1.8066423129812027e-05,
2452
+ "loss": 1.4824,
2453
+ "step": 340
2454
+ },
2455
+ {
2456
+ "epoch": 1.8316566063044937,
2457
+ "grad_norm": 0.32325626999744855,
2458
+ "learning_rate": 1.792443838903065e-05,
2459
+ "loss": 1.4303,
2460
+ "step": 341
2461
+ },
2462
+ {
2463
+ "epoch": 1.8370221327967808,
2464
+ "grad_norm": 0.32008576746121775,
2465
+ "learning_rate": 1.778270131650948e-05,
2466
+ "loss": 1.6245,
2467
+ "step": 342
2468
+ },
2469
+ {
2470
+ "epoch": 1.8423876592890678,
2471
+ "grad_norm": 0.37457992451894306,
2472
+ "learning_rate": 1.7641216873518878e-05,
2473
+ "loss": 1.4618,
2474
+ "step": 343
2475
+ },
2476
+ {
2477
+ "epoch": 1.8477531857813547,
2478
+ "grad_norm": 0.35750145316045384,
2479
+ "learning_rate": 1.749999001248635e-05,
2480
+ "loss": 1.5959,
2481
+ "step": 344
2482
+ },
2483
+ {
2484
+ "epoch": 1.8531187122736419,
2485
+ "grad_norm": 0.3306845841796733,
2486
+ "learning_rate": 1.735902567682315e-05,
2487
+ "loss": 1.5816,
2488
+ "step": 345
2489
+ },
2490
+ {
2491
+ "epoch": 1.858484238765929,
2492
+ "grad_norm": 0.38970827119176255,
2493
+ "learning_rate": 1.7218328800751288e-05,
2494
+ "loss": 1.5529,
2495
+ "step": 346
2496
+ },
2497
+ {
2498
+ "epoch": 1.863849765258216,
2499
+ "grad_norm": 0.3217477415509899,
2500
+ "learning_rate": 1.7077904309130782e-05,
2501
+ "loss": 1.5559,
2502
+ "step": 347
2503
+ },
2504
+ {
2505
+ "epoch": 1.869215291750503,
2506
+ "grad_norm": 0.36288548537121584,
2507
+ "learning_rate": 1.6937757117287278e-05,
2508
+ "loss": 1.4984,
2509
+ "step": 348
2510
+ },
2511
+ {
2512
+ "epoch": 1.87458081824279,
2513
+ "grad_norm": 0.3460179189739247,
2514
+ "learning_rate": 1.6797892130840036e-05,
2515
+ "loss": 1.5385,
2516
+ "step": 349
2517
+ },
2518
+ {
2519
+ "epoch": 1.8799463447350773,
2520
+ "grad_norm": 0.31554481787674976,
2521
+ "learning_rate": 1.665831424553015e-05,
2522
+ "loss": 1.504,
2523
+ "step": 350
2524
+ },
2525
+ {
2526
+ "epoch": 1.8853118712273642,
2527
+ "grad_norm": 0.30549498763968225,
2528
+ "learning_rate": 1.651902834704924e-05,
2529
+ "loss": 1.5228,
2530
+ "step": 351
2531
+ },
2532
+ {
2533
+ "epoch": 1.8906773977196512,
2534
+ "grad_norm": 0.3277064150411407,
2535
+ "learning_rate": 1.6380039310868416e-05,
2536
+ "loss": 1.4852,
2537
+ "step": 352
2538
+ },
2539
+ {
2540
+ "epoch": 1.8960429242119383,
2541
+ "grad_norm": 0.31968263622304366,
2542
+ "learning_rate": 1.624135200206759e-05,
2543
+ "loss": 1.4611,
2544
+ "step": 353
2545
+ },
2546
+ {
2547
+ "epoch": 1.9014084507042255,
2548
+ "grad_norm": 0.32902733969646153,
2549
+ "learning_rate": 1.6102971275165228e-05,
2550
+ "loss": 1.4833,
2551
+ "step": 354
2552
+ },
2553
+ {
2554
+ "epoch": 1.9067739771965124,
2555
+ "grad_norm": 0.3299428742675132,
2556
+ "learning_rate": 1.596490197394841e-05,
2557
+ "loss": 1.4439,
2558
+ "step": 355
2559
+ },
2560
+ {
2561
+ "epoch": 1.9121395036887994,
2562
+ "grad_norm": 0.34500427705894593,
2563
+ "learning_rate": 1.5827148931303277e-05,
2564
+ "loss": 1.5616,
2565
+ "step": 356
2566
+ },
2567
+ {
2568
+ "epoch": 1.9175050301810865,
2569
+ "grad_norm": 0.32458276939765035,
2570
+ "learning_rate": 1.5689716969045848e-05,
2571
+ "loss": 1.4334,
2572
+ "step": 357
2573
+ },
2574
+ {
2575
+ "epoch": 1.9228705566733737,
2576
+ "grad_norm": 0.3342429982300284,
2577
+ "learning_rate": 1.5552610897753292e-05,
2578
+ "loss": 1.5311,
2579
+ "step": 358
2580
+ },
2581
+ {
2582
+ "epoch": 1.9282360831656606,
2583
+ "grad_norm": 0.3483438918440925,
2584
+ "learning_rate": 1.5415835516595465e-05,
2585
+ "loss": 1.4642,
2586
+ "step": 359
2587
+ },
2588
+ {
2589
+ "epoch": 1.9336016096579476,
2590
+ "grad_norm": 0.324692472057597,
2591
+ "learning_rate": 1.5279395613166986e-05,
2592
+ "loss": 1.5336,
2593
+ "step": 360
2594
+ },
2595
+ {
2596
+ "epoch": 1.9389671361502347,
2597
+ "grad_norm": 0.4011901483013197,
2598
+ "learning_rate": 1.5143295963319643e-05,
2599
+ "loss": 1.5634,
2600
+ "step": 361
2601
+ },
2602
+ {
2603
+ "epoch": 1.944332662642522,
2604
+ "grad_norm": 0.3791986336861211,
2605
+ "learning_rate": 1.5007541330995197e-05,
2606
+ "loss": 1.5722,
2607
+ "step": 362
2608
+ },
2609
+ {
2610
+ "epoch": 1.9496981891348089,
2611
+ "grad_norm": 0.3318324328550346,
2612
+ "learning_rate": 1.4872136468058661e-05,
2613
+ "loss": 1.6214,
2614
+ "step": 363
2615
+ },
2616
+ {
2617
+ "epoch": 1.9550637156270958,
2618
+ "grad_norm": 0.3865281831290857,
2619
+ "learning_rate": 1.4737086114131943e-05,
2620
+ "loss": 1.548,
2621
+ "step": 364
2622
+ },
2623
+ {
2624
+ "epoch": 1.960429242119383,
2625
+ "grad_norm": 0.3317269613634914,
2626
+ "learning_rate": 1.4602394996427942e-05,
2627
+ "loss": 1.5024,
2628
+ "step": 365
2629
+ },
2630
+ {
2631
+ "epoch": 1.9657947686116701,
2632
+ "grad_norm": 0.36387655313468187,
2633
+ "learning_rate": 1.4468067829585108e-05,
2634
+ "loss": 1.5256,
2635
+ "step": 366
2636
+ },
2637
+ {
2638
+ "epoch": 1.971160295103957,
2639
+ "grad_norm": 0.3494371010379711,
2640
+ "learning_rate": 1.4334109315502395e-05,
2641
+ "loss": 1.5559,
2642
+ "step": 367
2643
+ },
2644
+ {
2645
+ "epoch": 1.976525821596244,
2646
+ "grad_norm": 0.36135083308665883,
2647
+ "learning_rate": 1.4200524143174677e-05,
2648
+ "loss": 1.5669,
2649
+ "step": 368
2650
+ },
2651
+ {
2652
+ "epoch": 1.9818913480885312,
2653
+ "grad_norm": 0.34824673781683024,
2654
+ "learning_rate": 1.4067316988528617e-05,
2655
+ "loss": 1.6642,
2656
+ "step": 369
2657
+ },
2658
+ {
2659
+ "epoch": 1.9872568745808183,
2660
+ "grad_norm": 0.36134664903507996,
2661
+ "learning_rate": 1.3934492514259003e-05,
2662
+ "loss": 1.5003,
2663
+ "step": 370
2664
+ },
2665
+ {
2666
+ "epoch": 1.9926224010731053,
2667
+ "grad_norm": 0.3315306163140975,
2668
+ "learning_rate": 1.3802055369665534e-05,
2669
+ "loss": 1.3959,
2670
+ "step": 371
2671
+ },
2672
+ {
2673
+ "epoch": 1.9979879275653922,
2674
+ "grad_norm": 0.3179771784326003,
2675
+ "learning_rate": 1.3670010190490073e-05,
2676
+ "loss": 1.5285,
2677
+ "step": 372
2678
+ },
2679
+ {
2680
+ "epoch": 2.005365526492287,
2681
+ "grad_norm": 0.9915595865019317,
2682
+ "learning_rate": 1.3538361598754384e-05,
2683
+ "loss": 2.456,
2684
+ "step": 373
2685
+ },
2686
+ {
2687
+ "epoch": 2.0107310529845743,
2688
+ "grad_norm": 0.6291566214590382,
2689
+ "learning_rate": 1.3407114202598369e-05,
2690
+ "loss": 1.1708,
2691
+ "step": 374
2692
+ },
2693
+ {
2694
+ "epoch": 2.0160965794768613,
2695
+ "grad_norm": 0.5593895609190137,
2696
+ "learning_rate": 1.327627259611873e-05,
2697
+ "loss": 1.1864,
2698
+ "step": 375
2699
+ },
2700
+ {
2701
+ "epoch": 2.021462105969148,
2702
+ "grad_norm": 0.4205563210949494,
2703
+ "learning_rate": 1.314584135920815e-05,
2704
+ "loss": 1.1374,
2705
+ "step": 376
2706
+ },
2707
+ {
2708
+ "epoch": 2.021462105969148,
2709
+ "eval_loss": 2.232717752456665,
2710
+ "eval_runtime": 403.1787,
2711
+ "eval_samples_per_second": 6.322,
2712
+ "eval_steps_per_second": 0.791,
2713
+ "step": 376
2714
+ }
2715
+ ],
2716
+ "logging_steps": 1,
2717
+ "max_steps": 558,
2718
+ "num_input_tokens_seen": 0,
2719
+ "num_train_epochs": 3,
2720
+ "save_steps": 47,
2721
+ "stateful_callbacks": {
2722
+ "TrainerControl": {
2723
+ "args": {
2724
+ "should_epoch_stop": false,
2725
+ "should_evaluate": false,
2726
+ "should_log": false,
2727
+ "should_save": true,
2728
+ "should_training_stop": false
2729
+ },
2730
+ "attributes": {}
2731
+ }
2732
+ },
2733
+ "total_flos": 1.0096298209438597e+18,
2734
+ "train_batch_size": 1,
2735
+ "trial_name": null,
2736
+ "trial_params": null
2737
+ }
checkpoint-376/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5727b190dfc4585176e91dd00249738e0c6d16f3c0cdf2808b52246323abda10
3
+ size 9208
checkpoint-376/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-376/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-423/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-423/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-32B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 27648,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 64,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 64,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 131072,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-423/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.49.0"
7
+ }
checkpoint-423/global_step423/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d53ca88cc115bac807bc0564f458a6366c6e2cf92f372a741345b211de66b8f
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c904f45f340885129b19d06d5d845703cba23da90e32143b0026cc65253907
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aed5006c84a8e6eeaf4a8a9329310aca597aae03ab1241ee7eae611aeef4c413
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e98139254d94a00efc8ea5720890b5842389ca1c42da27a278c37b2edbcef636
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5b9dc875d827454e6d30db3bf597218b7d693a8321974bb1fc9664dd488d24
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:670208ef1105ec0111dd85f9abede0b1c106ca6f228593822ce6754d0c358876
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5649bdee963e15c7fe20f1dd709499e47323fd897ef7300ff54328fe5e63e6f
3
+ size 381701
checkpoint-423/global_step423/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd827cfa844eda7cfc9addb70fb972c44ac28ea8c537d0d31e3380e4c31d421c
3
+ size 381701
checkpoint-423/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step423
checkpoint-423/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-423/model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 65527752704
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
776
+ "model.norm.weight": "model-00014-of-00014.safetensors"
777
+ }
778
+ }
checkpoint-423/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1bec598899f9d59e70c1b4705ce420a1e0a670957b6c8153a589880068ae5a4
3
+ size 15984
checkpoint-423/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60d2348aae518f4c44693db9c9b4b3a3299c556e7f0a86c188b2e4c3e364a7c
3
+ size 15984
checkpoint-423/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffe5a79d3bcb4ce033de360bc765e616316e3562aba25887cd85c4adbb935abf
3
+ size 15984
checkpoint-423/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9a9d1f6e22677721841890e6a27855857e6840137650d609eb8e4ac13b71d29
3
+ size 15984