File size: 187,479 Bytes
e358a10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 |
# coding=utf-8
# transformers==4.39.2 NOTE
# Borrows some implementations from https://github.com/Cooperx521/PyramidDrop, thanks!
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Qwen2 model."""
import inspect
import math
import warnings
from typing import List, Optional, Tuple, Union, Dict, Any, Iterable
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from .constants import IGNORE_INDEX
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
_CONFIG_FOR_DOC = "Qwen2Config"
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Qwen/Qwen2-7B-beta",
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2
]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
class Qwen2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Qwen2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`): Not used in dynamic RoPE, kept for compatibility.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and sin.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# dim alignment
step = cos.shape[-1] // q_pe.shape[-1]
indices = torch.arange(0, cos.size(-1), step, device=cos.device)
cos = cos[..., indices]
sin = sin[..., indices]
q_embed = (q_pe * cos) + (rotate_half(q_pe) * sin)
k_embed = (k_pe * cos) + (rotate_half(k_pe) * sin)
return q_embed, k_embed
def apply_rotary_pos_emb2_single(tensor, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# dim alignment
step = cos.shape[-1] // tensor.shape[-1]
indices = torch.arange(0, cos.size(-1), step, device=cos.device)
cos = cos[..., indices]
sin = sin[..., indices]
tensor_embed = (tensor * cos) + (rotate_half(tensor) * sin)
return tensor_embed
def apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin, vision_indices, text_indices, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
step = cos.shape[-1] // q_pe.shape[-1]
indices = torch.arange(0, cos.size(-1), step, device=cos.device)
cos = cos[..., indices]
sin = sin[..., indices]
# 对整个q_pe应用位置编码
q_pe = (q_pe * cos) + (rotate_half(q_pe) * sin)
# 为vision_k_pe选择对应位置的cos和sin
if vision_indices[0].numel() > 0:
vision_cos = cos[vision_indices[0], :, vision_indices[1], :] # 直接用索引选择
vision_sin = sin[vision_indices[0], :, vision_indices[1], :]
vision_cos = vision_cos.squeeze(1).unsqueeze(0)
vision_sin = vision_sin.squeeze(1).unsqueeze(0)
vision_k_pe = (vision_k_pe * vision_cos) + (rotate_half(vision_k_pe) * vision_sin)
# 为text_key_pe选择对应位置的cos和sin
if text_indices[0].numel() > 0:
text_cos = cos[text_indices[0], :, text_indices[1], :] # 直接用索引选择
text_sin = sin[text_indices[0], :, text_indices[1], :]
text_cos = text_cos.squeeze(1).unsqueeze(0)
text_sin = text_sin.squeeze(1).unsqueeze(0)
text_key_pe = (text_key_pe * text_cos) + (rotate_half(text_key_pe) * text_sin)
return q_pe, vision_k_pe, text_key_pe
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
class Qwen2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Qwen2Attention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.softmax_temperature = nn.Parameter(torch.tensor(1.0))
self.k_nope_scale_factor = nn.Parameter(torch.tensor(1.0))
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
# 控制变量:处理模式
# "mixed": 多模态分离处理(视觉压缩,文本完整)
# "compress_all": 统一压缩处理
# "no_compress": 统一不压缩处理(但仍使用部分RoPE形式)
self.processing_mode = getattr(config, 'attention_processing_mode', 'compress_all')
# 基础投影层
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = Qwen2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
# 共同的参数设置(所有模式都使用部分RoPE)
config.attention_bias = False
self.interval = 2
self.q_rope_dim = self.num_heads * (self.head_dim//self.interval)
self.q_nope_dim = self.num_heads * self.head_dim - self.q_rope_dim
self.k_rope_dim = self.num_key_value_heads * (self.head_dim//self.interval)
self.k_nope_dim = self.num_key_value_heads*self.head_dim - self.k_rope_dim
self.kv_lora_rank = 128 #4个kv头每个头的latentsize
self.v_head_dim = self.head_dim
self.kv_a_proj_nope = nn.Linear(self.hidden_size, self.num_key_value_heads*self.kv_lora_rank, bias=False)
self.k_proj_pe = nn.Linear(self.hidden_size,self.k_rope_dim,bias=True)
self.k_b_proj_nope = nn.Linear(self.num_key_value_heads*self.kv_lora_rank, self.num_key_value_groups*self.k_nope_dim, bias=True)
self.v_b_proj = nn.Linear(self.num_key_value_heads*self.kv_lora_rank, self.num_key_value_groups*self.num_key_value_heads*self.head_dim, bias=True)
# 新增属性存储当前处理的索引
self.prefill_vision_indices = None
self.prefill_text_indices = None
self.prefill_seq_len = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# 根据处理模式选择不同的forward逻辑
if self.processing_mode == 'no_compress':
return self._forward_no_compress(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'compress_all':
return self._forward_compress_all(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'mixed':
return self._forward_mixed(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
else:
raise ValueError(f"Unsupported processing mode: {self.processing_mode}")
def _forward_no_compress(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""不压缩处理,但使用部分RoPE形式"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
q_nope = query_states[..., ~mask]
# 计算key和value states(完整的,不压缩)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# 从完整的key中分离pe部分(类似query的处理方式)
k_pe = key_states[..., mask] # 直接裁剪,不使用k_proj_pe
k_nope = key_states[..., ~mask]
# 处理缓存
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe, position_ids)
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids)
# 重新组合key states(pe部分使用RoPE后的结果,nope部分保持原样)
key_states[..., mask] = k_pe
key_states[..., ~mask] = k_nope
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# no_compress模式:文本用完整缓存,视觉部分用None占位
_, _, final_key_states, final_value_states = past_key_value.update(
vision_k_pe=None, # 不压缩模式不需要
vision_compressed_kv=None, # 不压缩模式不需要
text_key_states=key_states, # 所有token都作为"文本"处理
text_value_states=value_states,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
final_key_states = key_states
final_value_states = value_states
# 重复到所有头
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups)
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups)
# 计算attention
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim)
# 分别计算pe和nope的attention权重
attn_weights_pe = torch.matmul(q_pe, final_key_states[:, :, :, mask].transpose(2, 3)) * effective_scale_factor
attn_weights_nope = torch.matmul(q_nope, final_key_states[:, :, :, ~mask].transpose(2, 3)) * effective_scale_factor
attn_weights = attn_weights_pe + attn_weights_nope
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, final_value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_compress_all(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""统一压缩处理,所有token都使用MLA"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
q_nope = query_states[..., ~mask]
# ========== 统一压缩计算(所有token都使用MLA) ==========
compressed_kv = self.kv_a_proj_nope(hidden_states) # [bsz, q_len, num_kv_heads*lora_rank]
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2)
# 为缓存准备数据
k_pe_for_cache = k_pe
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2)
# ========== 处理缓存和位置编码 ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids)
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids)
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# compress_all模式:所有token都用压缩缓存,文本部分用None占位
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update(
vision_k_pe=k_pe_for_cache, # 所有token都作为"视觉"处理(使用压缩)
vision_compressed_kv=compressed_kv_for_cache,
text_key_states=None, # 统一压缩模式不需要
text_value_states=None, # 统一压缩模式不需要
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
# 没有缓存,直接使用当前计算的结果
cached_k_pe = k_pe_for_cache
cached_compressed_kv = compressed_kv_for_cache
# ========== 恢复原始维度 ==========
seq_len = cached_k_pe.shape[-2]
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank)
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2)
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# 重复k_pe到所有头(只有k_pe需要repeat)
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups)
# k_nope和value_states已经是所有头的维度,不需要repeat
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype)
# 合并key states
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
final_key_states[:, :, :, mask] = k_pe_repeated
final_key_states[:, :, :, ~mask] = k_nope
final_value_states = value_states
# ========== 计算attention ==========
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim)
# 分别计算pe和nope的attention权重
attn_weights_pe = torch.matmul(q_pe, final_key_states[:, :, :, mask].transpose(2, 3)) * effective_scale_factor
attn_weights_nope = torch.matmul(q_nope, final_key_states[:, :, :, ~mask].transpose(2, 3)) * effective_scale_factor
attn_weights = attn_weights_pe + attn_weights_nope
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# 应用softmax和dropout
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, final_value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_mixed(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode
判断逻辑:
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见)
3. 如果有缓存且当前输入只有文本token,则是decode阶段
"""
# 检查当前输入是否包含视觉token
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any())
# 判断是prefill还是decode阶段
if past_key_value is None or has_vision_tokens:
# print("-------------------@prefilling------------------------")
# prefill阶段:第一次forward或包含视觉token
return self._forward_mixed_prefill(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
else:
# decode阶段:有缓存且当前输入只有文本token
return self._forward_mixed_decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
def _forward_mixed_prefill(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的prefill阶段处理:
- 处理视觉token(使用压缩投影)和文本token(使用完整投影)
- 分别存储到不同的缓存中
"""
bsz, q_len, _ = hidden_states.size()
self.prefill_seq_len = q_len
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
q_nope = query_states[..., ~mask]
# ========== 2. 分离视觉和文本token ==========
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode"
vision_mask = vision_text_mask # [bsz, q_len], True表示视觉token
text_mask = ~vision_text_mask # [bsz, q_len], True表示文本token
# 获取视觉token的索引和数据
vision_indices = vision_text_mask.nonzero(as_tuple=True) # (batch_idx, seq_idx)
vision_tokens = hidden_states[vision_indices] # [num_vision_tokens, hidden_size]
vision_batch_indices = vision_indices[0] # 每个视觉token属于哪个batch
vision_seq_indices = vision_indices[1] # 每个视觉token在序列中的位置
num_vision_tokens = vision_tokens.shape[0]
# 获取文本token的索引和数据
text_indices = (~vision_text_mask).nonzero(as_tuple=True)
text_tokens = hidden_states[text_indices] # [num_text_tokens, hidden_size]
text_batch_indices = text_indices[0] # 每个文本token属于哪个batch
text_seq_indices = text_indices[1] # 每个文本token在序列中的位置
num_text_tokens = text_tokens.shape[0]
# 存储到当前层的属性中
self.prefill_vision_indices = vision_indices
self.prefill_text_indices = text_indices
# ========== 3. 分别处理视觉和文本token ==========
# 视觉token:使用压缩投影
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1)
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1)
# 文本token:使用原始投影
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
# ========== 4. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(vision_k_pe, position_ids)
text_key_pe = text_key_states[..., mask]
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices)
text_key_states[..., mask] = text_key_pe #text_key_states (num_key_value_heads,num_text_tokens, self.head_dim)
# ========== 5. 更新缓存(分离存储) ==========
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update(
vision_k_pe=vision_k_pe,
vision_compressed_kv=vision_compressed_kv,
text_key_states=text_key_states,
text_value_states=text_value_states,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads,num_text_tokens, self.head_dim),可以正常在MixedDynamicCache中工作
# ========== 6. 根据当前序列的mask按需组装key/value ==========
final_key_pe = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim//self.interval,
device=hidden_states.device, dtype=hidden_states.dtype)
final_key_nope = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim - self.head_dim//self.interval,
device=hidden_states.device, dtype=hidden_states.dtype)
final_value = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim,
device=hidden_states.device, dtype=hidden_states.dtype)
# 组装视觉token的K/V(从压缩格式恢复)
if num_vision_tokens > 0 and vision_k_pe is not None:
# 从压缩状态恢复nope和value
# vision_compressed_kv: [num_key_value_heads, num_vision_tokens, lora_rank]
# 需要重新reshape为 [num_vision_tokens, num_key_value_heads * lora_rank]
cache_num_vision_tokens = vision_compressed_kv.shape[1]
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape(
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank) # [num_vision_tokens, num_key_value_heads * lora_rank]
# 恢复k_nope和value
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
# 重复k_pe到所有头: [num_key_value_heads, num_vision_tokens, pe_dim] -> [num_heads, num_vision_tokens, pe_dim]
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 使用存储的索引填充到final tensors
final_key_pe[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_pe_repeated.transpose(0, 1)
final_key_nope[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_nope
final_value[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value
# 组装文本token的K/V(直接使用完整格式)
if num_text_tokens > 0 and text_key_states is not None:
# text_key_states: [num_key_value_heads, num_text_tokens, head_dim]
# text_value_states: [num_key_value_heads, num_text_tokens, head_dim]
# 重复k/v到所有头
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0)
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 分离pe和nope
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
text_key_pe_repeated = text_key_repeated[..., mask]
text_key_nope_repeated = text_key_repeated[..., ~mask]
# 使用存储的索引填充到final tensors
final_key_pe[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_pe_repeated.transpose(0, 1)
final_key_nope[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_nope_repeated.transpose(0, 1)
final_value[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1)
# ========== 7. 计算attention ==========
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim)
attn_weights_pe = torch.matmul(q_pe, final_key_pe.transpose(2, 3)) * effective_scale_factor
attn_weights_nope = torch.matmul(q_nope, final_key_nope.transpose(2, 3)) * effective_scale_factor
attn_weights = attn_weights_pe + attn_weights_nope
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, final_value)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_mixed_decode(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的decode阶段处理:
- 当前输入只有文本token(使用完整投影)
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式)
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾
"""
bsz, q_len, _ = hidden_states.size()
assert past_key_value is not None, "past_key_value is required in decode stage"
assert q_len == 1, "Decode stage should have q_len=1" # decode阶段通常一次只处理一个token
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
q_nope = query_states[..., ~mask]
# ========== 2. 处理当前文本token(使用完整投影) ==========
# 当前输入全是文本token,使用原始投影
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# ========== 3. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(current_text_key, position_ids)
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin)
# 对当前文本token的key应用位置编码
current_text_key_pe = current_text_key[..., mask]
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin)
current_text_key[..., mask] = current_text_key_pe
# ========== 4. 更新缓存(按batch×seqlen格式存储新文本) ==========
# 直接transpose和view,更简洁的维度变换
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
if use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update(
vision_k_pe=None, # decode阶段没有新的视觉token
vision_compressed_kv=None,
text_key_states=current_text_key_for_cache, # 按统一格式添加当前文本token
text_value_states=current_text_value_for_cache,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads , num_tokens , head_dim)
# ========== 5. 使用存储的索引组装完整的key/value ==========
vision_token_len = cached_vision_k_pe.shape[-2] # prefill阶段的vision tokens数量
prefill_text_token_len = len(self.prefill_text_indices[0]) # prefill阶段的text tokens数量
total_cached_text_len = cached_text_key.shape[-2] # 缓存中所有text tokens数量
decode_text_token_len = total_cached_text_len - prefill_text_token_len # decode阶段累积的text tokens数量
prefill_total_token_len = vision_token_len + prefill_text_token_len#prefill阶段的tokens数量
decode_text_seq_len = decode_text_token_len//bsz #decode阶段的序列长度,不是token数量
total_seq_len = self.prefill_seq_len + decode_text_seq_len #总共的序列长度,不是token数量
# 初始化最终的key/value tensors
final_key_pe = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim//self.interval, device=hidden_states.device, dtype=hidden_states.dtype)
final_key_nope = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim - self.head_dim//self.interval,device=hidden_states.device, dtype=hidden_states.dtype)
final_value = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim,device=hidden_states.device, dtype=hidden_states.dtype)
# 1. 恢复历史vision tokens(使用prefill索引)
if vision_token_len > 0:
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank)
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)#[num_heads, vision_token_len, pe_dim]
# 使用prefill的vision索引填充
final_key_pe[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_pe_repeated.transpose(0, 1)
final_key_nope[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_nope
final_value[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value
# 2. 恢复历史prefill text tokens(使用prefill索引)
if prefill_text_token_len > 0:
# 取缓存中前面的prefill text tokens
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :] # [num_key_value_heads, prefill_text_len, head_dim]
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :]
# 重复到所有头 - 现在都是 [num_heads, prefill_text_len, head_dim]
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0)
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 分离pe和nope
prefill_text_key_pe = prefill_text_key_repeated[..., mask]
prefill_text_key_nope = prefill_text_key_repeated[..., ~mask]
# 使用prefill的text索引填充
final_key_pe[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_pe.transpose(0, 1)
final_key_nope[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_nope.transpose(0, 1)
final_value[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_value_repeated.transpose(0, 1)
# 3. 添加decode阶段的text tokens(按顺序追加在后面)
if decode_text_token_len > 0:
# 取缓存中后面的decode text tokens
decode_text_key = cached_text_key[:, prefill_text_token_len:, :] # [num_key_value_heads, decode_text_len, head_dim]
decode_text_value = cached_text_value[:, prefill_text_token_len:, :]
# 重复到所有头并reshape为batch格式
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) # [num_heads, decode_text_len, head_dim]
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 将decode tokens reshape回batch格式: [num_heads, bsz*decode_text_seq_len, head_dim] -> [bsz, num_heads, decode_text_seq_len, head_dim]
decode_text_key_batch = decode_text_key_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1)
decode_text_value_batch = decode_text_value_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1)
# 分离pe和nope
decode_text_key_pe = decode_text_key_batch[..., mask]
decode_text_key_nope = decode_text_key_batch[..., ~mask]
# 追加在序列末尾
final_key_pe[:, :, self.prefill_seq_len :, :] = decode_text_key_pe
final_key_nope[:, :, self.prefill_seq_len :, :] = decode_text_key_nope
final_value[:, :, self.prefill_seq_len :, :] = decode_text_value_batch
# ========== 6. 计算attention ==========
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim)
attn_weights_pe = torch.matmul(q_pe, final_key_pe.transpose(2, 3)) * effective_scale_factor
attn_weights_nope = torch.matmul(q_nope, final_key_nope.transpose(2, 3)) * effective_scale_factor
attn_weights = attn_weights_pe + attn_weights_nope
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, total_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, total_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, final_value)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2FlashAttention2(Qwen2Attention):
"""
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
config.max_window_layers layers.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# 根据处理模式选择不同的forward逻辑
if self.processing_mode == 'no_compress':
print('*********************************no_compress*********************************')
return self._forward_no_compress(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'compress_all':
print('*********************************compress_all*********************************')
# print('flash_compress_all')
return self._forward_compress_all(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'mixed':
print('********************************* mixed *********************************')
return self._forward_mixed(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
else:
raise ValueError(f"Unsupported processing mode: {self.processing_mode}")
def _forward_no_compress(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""不压缩处理,但使用部分RoPE形式"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# 计算key和value states(完整的,不压缩)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# 从完整的key中分离pe部分(类似query的处理方式)
k_pe = key_states[..., mask] # 直接裁剪,不使用k_proj_pe
k_nope = key_states[..., ~mask]
# 处理缓存
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe, position_ids)
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids)
# 重新组合key states(pe部分使用RoPE后的结果,nope部分保持原样)
key_states[..., mask] = k_pe
key_states[..., ~mask] = k_nope
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# no_compress模式:文本用完整缓存,视觉部分用None占位
_, _, final_key_states, final_value_states = past_key_value.update(
vision_k_pe=None, # 不压缩模式不需要
vision_compressed_kv=None, # 不压缩模式不需要
text_key_states=key_states, # 所有token都作为"文本"处理
text_value_states=value_states,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
final_key_states = key_states
final_value_states = value_states
# 重复到所有头
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups)
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups)
# ========== Flash Attention计算 ==========
# 重新组合query states
query_states = q_pe.new_empty(bsz, self.num_heads, q_len, self.head_dim)
query_states[:, :, :, mask] = q_pe
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = final_key_states.transpose(1, 2)
value_states = final_value_states.transpose(1, 2)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
current_softmax_scale = self.head_dim ** (-0.5)
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=effective_softmax_scale.item(),
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_compress_all(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""统一压缩处理,所有token都使用MLA"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 统一压缩计算(所有token都使用MLA) ==========
compressed_kv = self.kv_a_proj_nope(hidden_states) # [bsz, q_len, num_kv_heads*lora_rank]
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2)
# 为缓存准备数据
k_pe_for_cache = k_pe
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2)
# ========== 处理缓存和位置编码 ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids)
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids)
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# compress_all模式:所有token都用压缩缓存,文本部分用None占位
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update(
vision_k_pe=k_pe_for_cache, # 所有token都作为"视觉"处理(使用压缩)
vision_compressed_kv=compressed_kv_for_cache,
text_key_states=None, # 统一压缩模式不需要
text_value_states=None, # 统一压缩模式不需要
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
# 没有缓存,直接使用当前计算的结果
cached_k_pe = k_pe_for_cache
cached_compressed_kv = compressed_kv_for_cache
# ========== 恢复原始维度 ==========
seq_len = cached_k_pe.shape[-2]
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank)
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2)
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# 重复k_pe到所有头(只有k_pe需要repeat)
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups)
# k_nope和value_states已经是所有头的维度,不需要repeat
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype)
# 合并key states
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
final_key_states[:, :, :, mask] = k_pe_repeated
final_key_states[:, :, :, ~mask] = k_nope
final_value_states = value_states
# ========== Flash Attention计算 ==========
# 重新组合query states
query_states = q_pe.new_empty(bsz, self.num_heads, q_len, self.head_dim)
query_states[:, :, :, mask] = q_pe
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2).contiguous()
key_states = final_key_states.transpose(1, 2).contiguous()
value_states = final_value_states.transpose(1, 2).contiguous()
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
current_softmax_scale = self.head_dim ** (-0.5)
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=effective_softmax_scale.item(),
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_mixed(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode
判断逻辑:
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见)
3. 如果有缓存且当前输入只有文本token,则是decode阶段
"""
# 检查当前输入是否包含视觉token
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any())
# 判断是prefill还是decode阶段
if past_key_value is None or has_vision_tokens:
# print("-------------------@prefilling------------------------")
# prefill阶段:第一次forward或包含视觉token
return self._forward_mixed_prefill(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
else:
# decode阶段:有缓存且当前输入只有文本token
return self._forward_mixed_decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
def _forward_mixed_prefill(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的prefill阶段处理:
- 处理视觉token(使用压缩投影)和文本token(使用完整投影)
- 分别存储到不同的缓存中
"""
bsz, q_len, _ = hidden_states.size()
self.prefill_seq_len = q_len
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 2. 分离视觉和文本token ==========
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode"
vision_mask = vision_text_mask # [bsz, q_len], True表示视觉token
text_mask = ~vision_text_mask # [bsz, q_len], True表示文本token
# 获取视觉token的索引和数据
vision_indices = vision_text_mask.nonzero(as_tuple=True) # (batch_idx, seq_idx)
vision_tokens = hidden_states[vision_indices] # [num_vision_tokens, hidden_size]
vision_batch_indices = vision_indices[0] # 每个视觉token属于哪个batch
vision_seq_indices = vision_indices[1] # 每个视觉token在序列中的位置
num_vision_tokens = vision_tokens.shape[0]
# 获取文本token的索引和数据
text_indices = (~vision_text_mask).nonzero(as_tuple=True)
text_tokens = hidden_states[text_indices] # [num_text_tokens, hidden_size]
text_batch_indices = text_indices[0] # 每个文本token属于哪个batch
text_seq_indices = text_indices[1] # 每个文本token在序列中的位置
num_text_tokens = text_tokens.shape[0]
# 存储到当前层的属性中
self.prefill_vision_indices = vision_indices
self.prefill_text_indices = text_indices
# ========== 3. 分别处理视觉和文本token ==========
# 视觉token:使用压缩投影
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1)
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1)
# 文本token:使用原始投影
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
# ========== 4. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(vision_k_pe, position_ids)
text_key_pe = text_key_states[..., mask]
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices)
text_key_states[..., mask] = text_key_pe
# ========== 5. 更新缓存(分离存储) ==========
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update(
vision_k_pe=vision_k_pe.contiguous(),
vision_compressed_kv=vision_compressed_kv.contiguous(),
text_key_states=text_key_states.contiguous(),
text_value_states=text_value_states.contiguous(),
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads,num_text_tokens, self.head_dim),可以正常在MixedDynamicCache中工作
# ========== 6. 基于切片和cat的简洁重组方法 ==========
# 处理视觉和文本token数据
if num_vision_tokens > 0:
cache_num_vision_tokens = vision_compressed_kv.shape[1]
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape(
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank)
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)
vision_key_full = torch.empty(cache_num_vision_tokens, self.num_heads, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1)
vision_key_full[..., ~mask] = vision_k_nope
if num_text_tokens > 0:
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1)
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1)
# 按batch循环,用切片和cat拼装
batch_keys = []
batch_values = []
for batch_idx in range(bsz):
# 找到当前batch中视频token的起始和结束位置
batch_vision_mask = self.prefill_vision_indices[0] == batch_idx
vision_start = self.prefill_vision_indices[1][batch_vision_mask].min().item()
vision_end = self.prefill_vision_indices[1][batch_vision_mask].max().item() + 1
# 找到当前batch的文本token,分离视频前后的文本token
batch_text_mask = self.prefill_text_indices[0] == batch_idx
batch_text_positions = self.prefill_text_indices[1][batch_text_mask]
pre_video_text_mask = batch_text_positions < vision_start
post_video_text_mask = batch_text_positions >= vision_end
# 构建当前batch的key和value序列
seq_parts_key = []
seq_parts_value = []
# 视频前的文本token
if pre_video_text_mask.any():
pre_text_indices = batch_text_positions[pre_video_text_mask]
pre_text_token_indices = torch.where(batch_text_mask)[0][pre_video_text_mask]
seq_parts_key.append(text_key_repeated[pre_text_token_indices])
seq_parts_value.append(text_value_repeated[pre_text_token_indices])
# 视频token
vision_token_indices = torch.where(batch_vision_mask)[0]
seq_parts_key.append(vision_key_full[vision_token_indices])
seq_parts_value.append(vision_value[vision_token_indices])
# 视频后的文本token
if post_video_text_mask.any():
post_text_indices = batch_text_positions[post_video_text_mask]
post_text_token_indices = torch.where(batch_text_mask)[0][post_video_text_mask]
seq_parts_key.append(text_key_repeated[post_text_token_indices])
seq_parts_value.append(text_value_repeated[post_text_token_indices])
# cat拼接当前batch的完整序列
batch_key = torch.cat(seq_parts_key, dim=0) # [seq_len, num_heads, head_dim]
batch_value = torch.cat(seq_parts_value, dim=0)
batch_keys.append(batch_key.unsqueeze(0)) # [1, seq_len, num_heads, head_dim]
batch_values.append(batch_value.unsqueeze(0))
final_key_states = torch.cat(batch_keys, dim=0) # [bsz, seq_len, num_heads, head_dim]
final_value = torch.cat(batch_values, dim=0)
# ========== 7. Flash Attention计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2).contiguous()
# final_key_states和final_value已经是目标形状,无需transpose
key_states = final_key_states.contiguous()
value_states = final_value.contiguous()
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
current_softmax_scale = self.head_dim ** (-0.5)
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=effective_softmax_scale.item(),
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _forward_mixed_decode(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的decode阶段处理:
- 当前输入只有文本token(使用完整投影)
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式)
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾
"""
bsz, q_len, _ = hidden_states.size()
assert past_key_value is not None, "past_key_value is required in decode stage"
assert q_len == 1, "Decode stage should have q_len=1" # decode阶段通常一次只处理一个token
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 2. 处理当前文本token(使用完整投影) ==========
# 当前输入全是文本token,使用原始投影
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# ========== 3. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(current_text_key, position_ids)
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin)
# 对当前文本token的key应用位置编码
current_text_key_pe = current_text_key[..., mask]
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin)
current_text_key[..., mask] = current_text_key_pe
# ========== 4. 更新缓存(按batch×seqlen格式存储新文本) ==========
# 直接transpose和view,更简洁的维度变换
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
if use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update(
vision_k_pe=None, # decode阶段没有新的视觉token
vision_compressed_kv=None,
text_key_states=current_text_key_for_cache.contiguous(), # 按统一格式添加当前文本token
text_value_states=current_text_value_for_cache.contiguous(),
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads , num_tokens , head_dim)
# ========== 5. 使用存储的索引组装完整的key/value ==========
vision_token_len = cached_vision_k_pe.shape[-2] # prefill阶段的vision tokens数量
prefill_text_token_len = len(self.prefill_text_indices[0]) # prefill阶段的text tokens数量
total_cached_text_len = cached_text_key.shape[-2] # 缓存中所有text tokens数量
decode_text_token_len = total_cached_text_len - prefill_text_token_len # decode阶段累积的text tokens数量
prefill_total_token_len = vision_token_len + prefill_text_token_len#prefill阶段的tokens数量
decode_text_seq_len = decode_text_token_len//bsz #decode阶段的序列长度,不是token数量
total_seq_len = self.prefill_seq_len + decode_text_seq_len #总共的序列长度,不是token数量
# 准备历史vision tokens数据
if vision_token_len > 0:
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank)
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)
vision_key_full = torch.empty(vision_token_len, self.num_heads, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1)
vision_key_full[..., ~mask] = vision_k_nope
# 准备历史text tokens数据
if prefill_text_token_len > 0:
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :]
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :]
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1)
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1)
# 准备decode阶段的text tokens数据
if decode_text_token_len > 0:
decode_text_key = cached_text_key[:, prefill_text_token_len:, :]
decode_text_value = cached_text_value[:, prefill_text_token_len:, :]
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0)
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 按batch循环,用切片和cat拼装
batch_keys = []
batch_values = []
for batch_idx in range(bsz):
# 找到当前batch中视频token的位置
batch_vision_mask = self.prefill_vision_indices[0] == batch_idx
vision_start = self.prefill_vision_indices[1][batch_vision_mask].min().item()
vision_end = self.prefill_vision_indices[1][batch_vision_mask].max().item() + 1
vision_token_indices = torch.where(batch_vision_mask)[0]
# 找到当前batch的prefill text token位置
batch_text_mask = self.prefill_text_indices[0] == batch_idx
batch_text_positions = self.prefill_text_indices[1][batch_text_mask]
pre_video_text_mask = batch_text_positions < vision_start
post_video_text_mask = batch_text_positions >= vision_end
# 构建当前batch的完整序列
seq_parts_key = []
seq_parts_value = []
# prefill阶段:视频前的文本token
if pre_video_text_mask.any():
pre_text_token_indices = torch.where(batch_text_mask)[0][pre_video_text_mask]
seq_parts_key.append(prefill_text_key_repeated[pre_text_token_indices])
seq_parts_value.append(prefill_text_value_repeated[pre_text_token_indices])
# prefill阶段:视频token
seq_parts_key.append(vision_key_full[vision_token_indices])
seq_parts_value.append(vision_value[vision_token_indices])
# prefill阶段:视频后的文本token
if post_video_text_mask.any():
post_text_token_indices = torch.where(batch_text_mask)[0][post_video_text_mask]
seq_parts_key.append(prefill_text_key_repeated[post_text_token_indices])
seq_parts_value.append(prefill_text_value_repeated[post_text_token_indices])
# decode阶段:历史decode文本tokens
if decode_text_token_len > 0:
decode_start_idx = batch_idx * decode_text_seq_len
decode_end_idx = decode_start_idx + decode_text_seq_len
batch_decode_keys = decode_text_key_repeated[:, decode_start_idx:decode_end_idx].transpose(0, 1)
batch_decode_values = decode_text_value_repeated[:, decode_start_idx:decode_end_idx].transpose(0, 1)
seq_parts_key.append(batch_decode_keys)
seq_parts_value.append(batch_decode_values)
# cat拼接当前batch的完整序列
batch_key = torch.cat(seq_parts_key, dim=0)
batch_value = torch.cat(seq_parts_value, dim=0)
batch_keys.append(batch_key.unsqueeze(0)) # [1, seq_len, num_heads, head_dim]
batch_values.append(batch_value.unsqueeze(0))
# 最终拼装所有batch
final_key_states = torch.cat(batch_keys, dim=0) # [bsz, seq_len, num_heads, head_dim]
final_value = torch.cat(batch_values, dim=0)
# ========== 6. Flash Attention计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2).contiguous()
# final_key_states和final_value已经是目标形状,无需transpose
key_states = final_key_states.contiguous()
value_states = final_value.contiguous()
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
current_softmax_scale = self.head_dim ** (-0.5)
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=effective_softmax_scale.item(),
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# _flash_attention_forward和_upad_input方法保持不变
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
return attn_output
def _upad_input(
self, query_layer, key_layer, value_layer, attention_mask, query_length
):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask
)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2
class Qwen2SdpaAttention(Qwen2Attention):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# 根据处理模式选择不同的forward逻辑
if self.processing_mode == 'no_compress':
return self._forward_no_compress(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'compress_all':
return self._forward_compress_all(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
elif self.processing_mode == 'mixed':
return self._forward_mixed(
hidden_states, attention_mask, position_ids, past_key_value,
output_attentions, use_cache, vision_text_mask, **kwargs
)
else:
raise ValueError(f"Unsupported processing mode: {self.processing_mode}")
def _forward_no_compress(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""不压缩处理,但使用部分RoPE形式"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# 计算key和value states(完整的,不压缩)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# 从完整的key中分离pe部分(类似query的处理方式)
k_pe = key_states[..., mask] # 直接裁剪,不使用k_proj_pe
k_nope = key_states[..., ~mask]
# 处理缓存
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe, position_ids)
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids)
# 重新组合key states(pe部分使用RoPE后的结果,nope部分保持原样)
key_states[..., mask] = k_pe
key_states[..., ~mask] = k_nope
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# no_compress模式:文本用完整缓存,视觉部分用None占位
_, _, final_key_states, final_value_states = past_key_value.update(
vision_k_pe=None, # 不压缩模式不需要
vision_compressed_kv=None, # 不压缩模式不需要
text_key_states=key_states, # 所有token都作为"文本"处理
text_value_states=value_states,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
final_key_states = key_states
final_value_states = value_states
# 重复到所有头
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups)
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups)
# ========== SDPA计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
final_key_states = final_key_states.contiguous()
final_value_states = final_value_states.contiguous()
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
final_key_states,
final_value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
scale=sdpa_effective_scale.item(),
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
def _forward_compress_all(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""统一压缩处理,所有token都使用MLA"""
bsz, q_len, _ = hidden_states.size()
# 计算query states
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# 分离query的pe和nope部分
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 统一压缩计算(所有token都使用MLA) ==========
compressed_kv = self.kv_a_proj_nope(hidden_states) # [bsz, q_len, num_kv_heads*lora_rank]
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2)
# 为缓存准备数据
k_pe_for_cache = k_pe
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2)
# ========== 处理缓存和位置编码 ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# 应用旋转位置编码
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids)
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids)
# 更新缓存 - 统一使用MixedDynamicCache接口,用None占位不需要的部分
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
# compress_all模式:所有token都用压缩缓存,文本部分用None占位
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update(
vision_k_pe=k_pe_for_cache, # 所有token都作为"视觉"处理(使用压缩)
vision_compressed_kv=compressed_kv_for_cache,
text_key_states=None, # 统一压缩模式不需要
text_value_states=None, # 统一压缩模式不需要
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)
else:
# 没有缓存,直接使用当前计算的结果
cached_k_pe = k_pe_for_cache
cached_compressed_kv = compressed_kv_for_cache
# ========== 恢复原始维度 ==========
seq_len = cached_k_pe.shape[-2]
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank)
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2)
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# 重复k_pe到所有头(只有k_pe需要repeat)
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups)
# k_nope和value_states已经是所有头的维度,不需要repeat
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype)
# 合并key states
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
final_key_states[:, :, :, mask] = k_pe_repeated
final_key_states[:, :, :, ~mask] = k_nope
final_value_states = value_states
# ========== SDPA计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
final_key_states = final_key_states.contiguous()
final_key_states = final_key_states.contiguous()
final_value_states = final_value_states.contiguous()
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
final_key_states,
final_value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
scale=sdpa_effective_scale.item(),
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
def _forward_mixed(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode
判断逻辑:
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见)
3. 如果有缓存且当前输入只有文本token,则是decode阶段
"""
# 检查当前输入是否包含视觉token
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any())
# 判断是prefill还是decode阶段
if past_key_value is None or has_vision_tokens:
# print("-------------------@prefilling------------------------")
# prefill阶段:第一次forward或包含视觉token
return self._forward_mixed_prefill(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
else:
# decode阶段:有缓存且当前输入只有文本token
return self._forward_mixed_decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask,
**kwargs
)
def _forward_mixed_prefill(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的prefill阶段处理:
- 处理视觉token(使用压缩投影)和文本token(使用完整投影)
- 分别存储到不同的缓存中
"""
bsz, q_len, _ = hidden_states.size()
self.prefill_seq_len = q_len
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 2. 分离视觉和文本token ==========
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode"
vision_mask = vision_text_mask # [bsz, q_len], True表示视觉token
text_mask = ~vision_text_mask # [bsz, q_len], True表示文本token
# 获取视觉token的索引和数据
vision_indices = vision_text_mask.nonzero(as_tuple=True) # (batch_idx, seq_idx)
vision_tokens = hidden_states[vision_indices] # [num_vision_tokens, hidden_size]
vision_batch_indices = vision_indices[0] # 每个视觉token属于哪个batch
vision_seq_indices = vision_indices[1] # 每个视觉token在序列中的位置
num_vision_tokens = vision_tokens.shape[0]
# 获取文本token的索引和数据
text_indices = (~vision_text_mask).nonzero(as_tuple=True)
text_tokens = hidden_states[text_indices] # [num_text_tokens, hidden_size]
text_batch_indices = text_indices[0] # 每个文本token属于哪个batch
text_seq_indices = text_indices[1] # 每个文本token在序列中的位置
num_text_tokens = text_tokens.shape[0]
# 存储到当前层的属性中
self.prefill_vision_indices = vision_indices
self.prefill_text_indices = text_indices
# ========== 3. 分别处理视觉和文本token ==========
# 视觉token:使用压缩投影
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1)
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1)
# 文本token:使用原始投影
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1)
# ========== 4. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(vision_k_pe, position_ids)
text_key_pe = text_key_states[..., mask]
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices)
text_key_states[..., mask] = text_key_pe
# ========== 5. 更新缓存(分离存储) ==========
if past_key_value is not None and use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update(
vision_k_pe=vision_k_pe,
vision_compressed_kv=vision_compressed_kv,
text_key_states=text_key_states,
text_value_states=text_value_states,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads,num_text_tokens, self.head_dim),可以正常在MixedDynamicCache中工作
# ========== 6. 根据当前序列的mask按需组装key/value ==========
final_key_states = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
final_value_states = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim,
device=hidden_states.device, dtype=hidden_states.dtype)
# 组装视觉token的K/V(从压缩格式恢复)
if num_vision_tokens > 0 and vision_k_pe is not None:
# 从压缩状态恢复nope和value
# vision_compressed_kv: [num_key_value_heads, num_vision_tokens, lora_rank]
# 需要重新reshape为 [num_vision_tokens, num_key_value_heads * lora_rank]
cache_num_vision_tokens = vision_compressed_kv.shape[1]
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape(
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank) # [num_vision_tokens, num_key_value_heads * lora_rank]
# 恢复k_nope和value
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(
cache_num_vision_tokens, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
# 重复k_pe到所有头: [num_key_value_heads, num_vision_tokens, pe_dim] -> [num_heads, num_vision_tokens, pe_dim]
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 使用存储的索引填充到final tensors
vision_key_full = torch.empty(len(self.prefill_vision_indices[0]), self.num_heads, self.head_dim, device=final_key_states.device, dtype=final_key_states.dtype)
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1)
vision_key_full[..., ~mask] = vision_k_nope
final_key_states[self.prefill_vision_indices[0], :,self.prefill_vision_indices[1], :] = vision_key_full
final_value_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value
# 组装文本token的K/V(直接使用完整格式)
if num_text_tokens > 0 and text_key_states is not None:
# text_key_states: [num_key_value_heads, num_text_tokens, head_dim],text_value_states: [num_key_value_heads, num_text_tokens, head_dim]
# 重复k/v到所有头
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0)
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 使用存储的索引填充到final tensors
final_key_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_repeated.transpose(0, 1)
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1)
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1)
# ========== SDPA计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
final_key_states = final_key_states.contiguous()
final_key_states = final_key_states.contiguous()
final_value_states = final_value_states.contiguous()
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
final_key_states,
final_value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
scale=sdpa_effective_scale.item(),
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
def _forward_mixed_decode(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
vision_text_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
混合模式的decode阶段处理:
- 当前输入只有文本token(使用完整投影)
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式)
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾
"""
bsz, q_len, _ = hidden_states.size()
assert past_key_value is not None, "past_key_value is required in decode stage"
assert q_len == 1, "Decode stage should have q_len=1" # decode阶段通常一次只处理一个token
# ========== 1. 统一计算query states ==========
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device)
mask[::self.interval] = True
q_pe = query_states[..., mask]
# ========== 2. 处理当前文本token(使用完整投影) ==========
# 当前输入全是文本token,使用原始投影
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# ========== 3. 处理position encoding ==========
kv_seq_len = q_len
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError("layer_idx is required when using cache")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(current_text_key, position_ids)
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin)
# 对当前文本token的key应用位置编码
current_text_key_pe = current_text_key[..., mask]
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin)
current_text_key[..., mask] = current_text_key_pe
# ========== 4. 更新缓存(按batch×seqlen格式存储新文本) ==========
# 直接transpose和view,更简洁的维度变换
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim)
if use_cache:
cache_kwargs = {"sin": sin, "cos": cos}
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update(
vision_k_pe=None, # decode阶段没有新的视觉token
vision_compressed_kv=None,
text_key_states=current_text_key_for_cache, # 按统一格式添加当前文本token
text_value_states=current_text_value_for_cache,
layer_idx=self.layer_idx,
cache_kwargs=cache_kwargs
)#(num_key_value_heads , num_tokens , head_dim)
# ========== 5. 使用存储的索引组装完整的key/value ==========
vision_token_len = cached_vision_k_pe.shape[-2] # prefill阶段的vision tokens数量
prefill_text_token_len = len(self.prefill_text_indices[0]) # prefill阶段的text tokens数量
total_cached_text_len = cached_text_key.shape[-2] # 缓存中所有text tokens数量
decode_text_token_len = total_cached_text_len - prefill_text_token_len # decode阶段累积的text tokens数量
prefill_total_token_len = vision_token_len + prefill_text_token_len#prefill阶段的tokens数量
decode_text_seq_len = decode_text_token_len//bsz #decode阶段的序列长度,不是token数量
total_seq_len = self.prefill_seq_len + decode_text_seq_len #总共的序列长度,不是token数量
# 初始化最终的key/value tensors
final_key_states = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype)
final_value_states = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim,device=hidden_states.device, dtype=hidden_states.dtype)
# 1. 恢复历史vision tokens(使用prefill索引)
if vision_token_len > 0:
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank)
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval)
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim)
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype)
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0)#[num_heads, vision_token_len, pe_dim]
vision_key_full = torch.empty(len(self.prefill_vision_indices[0]), self.num_heads, self.head_dim, device=final_key_states.device, dtype=final_key_states.dtype)
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1)
vision_key_full[..., ~mask] = vision_k_nope
final_key_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_key_full
final_value_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value
# 2. 恢复历史prefill text tokens(使用prefill索引)
if prefill_text_token_len > 0:
# 取缓存中前面的prefill text tokens
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :] # [num_key_value_heads, prefill_text_len, head_dim]
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :]
# 重复到所有头 - 现在都是 [num_heads, prefill_text_len, head_dim]
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0)
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0)
final_key_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_repeated.transpose(0, 1)
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_value_repeated.transpose(0, 1)
# 3. 添加decode阶段的text tokens(按顺序追加在后面)
if decode_text_token_len > 0:
# 取缓存中后面的decode text tokens
decode_text_key = cached_text_key[:, prefill_text_token_len:, :] # [num_key_value_heads, decode_text_len, head_dim]
decode_text_value = cached_text_value[:, prefill_text_token_len:, :]
# 重复到所有头并reshape为batch格式
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) # [num_heads, decode_text_len, head_dim]
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0)
# 将decode tokens reshape回batch格式: [num_heads, bsz*decode_text_seq_len, head_dim] -> [bsz, num_heads, decode_text_seq_len, head_dim]
decode_text_key_batch = decode_text_key_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1)
decode_text_value_batch = decode_text_value_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1)
final_key_states[:, :, self.prefill_seq_len:, :] = decode_text_key_batch
final_value_states[:, :, self.prefill_seq_len :, :] = decode_text_value_batch
# ========== SDPA计算 ==========
# 重新组合query states
query_states[:, :, :, mask] = q_pe
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
final_key_states = final_key_states.contiguous()
final_key_states = final_key_states.contiguous()
final_value_states = final_value_states.contiguous()
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
final_key_states,
final_value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
scale=sdpa_effective_scale.item(),
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
QWEN2_ATTENTION_CLASSES = {
"eager": Qwen2Attention,
"flash_attention_2": Qwen2FlashAttention2,
"sdpa": Qwen2SdpaAttention,
}
class Qwen2DecoderLayer(nn.Module):
def __init__(self, config: Qwen2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
vision_text_mask: Optional[torch.Tensor] = None, # 新增参数
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
vision_text_mask (`torch.Tensor`, *optional*): mask to distinguish vision and text tokens
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention - 传递vision_text_mask
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask, # 传递mask
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
QWEN2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Qwen2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2PreTrainedModel(PreTrainedModel):
config_class = Qwen2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
QWEN2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2Model_Flash(Qwen2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
Args:
config: Qwen2Config
"""
def __init__(self, config: Qwen2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def create_vision_text_mask(self, batch_size, seq_len, device):
"""
创建区分视觉和文本token的mask
移到Model类中,避免循环引用
Returns:
torch.Tensor: shape=(batch_size, seq_len), True表示视觉token,False表示文本token
如果没有视觉信息则返回None
"""
if (hasattr(self, 'first_image_token_position') and
hasattr(self, 'num_image_token_lens')):
vision_mask = torch.zeros(batch_size, seq_len, dtype=torch.bool, device=device)
for i in range(batch_size):
if (i < len(self.first_image_token_position) and
i < len(self.num_image_token_lens)):
image_start = self.first_image_token_position[i]
if image_start != -1: # 有图像
image_length = self.num_image_token_lens[i]
end_pos = min(image_start + image_length, seq_len)
vision_mask[i, image_start:end_pos] = True
return vision_mask
return None
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
if past_key_values is None:
past_key_values = MixedDynamicCache()
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
# 在这里创建vision_text_mask,避免循环引用
vision_text_mask = self.create_vision_text_mask(batch_size, seq_length, hidden_states.device)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for layer_idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
vision_text_mask, # 传递mask
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
vision_text_mask=vision_text_mask, # 传递mask
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
###### copy from pdrop #########
# rank & drop after specific layer
# only drop in prefill stage when inference
rank_layer = layer_idx+1
if rank_layer in self.llm_compress_layer_list:
if hidden_states.shape[1] != 1: # prefill stage or training
stage = self.llm_compress_layer_list.index(rank_layer) # determine current stage
(
position_ids,
attention_mask,
hidden_states,
labels # update labels and return
) = self.video_level_compress(
cur_num = stage,
rank_layer = rank_layer,
features = hidden_states,
position_ids=position_ids,
attention_mask=attention_mask,
labels = labels
)
# 重新创建vision_text_mask,因为序列长度可能已经改变
vision_text_mask = self.create_vision_text_mask(batch_size, hidden_states.shape[1], hidden_states.device)
# process attention_mask again after updating
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, hidden_states.shape[1]),
hidden_states,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, hidden_states.shape[1]),
hidden_states,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
else:
# update position_ids in decoding stage when inference
stage = self.llm_compress_layer_list.index(rank_layer) # determine current stage
cur_visual_length = [int(cur_image_token * self.llm_image_token_ratio_list[stage]) for cur_image_token in self.num_image_token_lens]
next_visual_length = [int(cur_image_token * self.llm_image_token_ratio_list[stage + 1]) for cur_image_token in self.num_image_token_lens]
new_position_ids = []
for idx, cur_position_ids in enumerate(position_ids):
cur_position_ids = cur_position_ids - (cur_visual_length[idx] - next_visual_length[idx])
new_position_ids.append(cur_position_ids)
assert idx == 0, idx
position_ids = torch.tensor(new_position_ids, dtype=torch.long).unsqueeze(0)
#################
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None), labels
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
), labels
# implementation of pdrop
def video_level_compress(
self, cur_num, rank_layer, features ,
position_ids, attention_mask, labels
):
if self.llm_compress_type == 'uniform0_attention':
if cur_num == 0:
llm_compress_type = 'uniform'
else:
llm_compress_type = 'attention'
else:
llm_compress_type = self.llm_compress_type
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if position_ids is None:
position_ids = torch.arange(0, features.shape[1], dtype=torch.long, device=features.device).unsqueeze(0)
if getattr(self.config, 'tokenizer_padding_side', 'right') == "right":
batch_size = features.shape[0]
image_tokens = [int(cur_image_token * self.llm_image_token_ratio_list[cur_num]) for cur_image_token in self.num_image_token_lens]
keep_length = [int(cur_image_token * self.llm_image_token_ratio_list[cur_num + 1]) for cur_image_token in self.num_image_token_lens]
features_list = []
attention_mask_list = []
labels_list = []
if attention_mask is None:
attention_mask = torch.ones((batch_size,features.shape[1]), dtype=torch.bool, device=features.device)
else:
attention_mask = attention_mask.bool()
if labels is None:
labels = torch.full((batch_size,features.shape[1]), IGNORE_INDEX, device=features.device)
if 'attention' in llm_compress_type:
# obtain query_states and key_states to calculate attention map
hidden_states= features.clone().detach()
self_attn = self.layers[rank_layer].self_attn
hidden_states = self.layers[rank_layer].input_layernorm(hidden_states)
num_heads = self_attn.num_heads
num_key_value_heads = self_attn.num_key_value_heads
head_dim = self_attn.head_dim
bsz, q_len, _ = hidden_states.size()
query_states = self_attn.q_proj(hidden_states)
key_states = self_attn.k_proj(hidden_states)
value_states = self_attn.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, num_heads, head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, num_key_value_heads, head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
cos, sin = self_attn.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
key_states = repeat_kv(key_states, self_attn.num_key_value_groups)
# attention_mask
eager_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, q_len), hidden_states, past_key_values_length=0
).to(device=query_states.device)
# take valid features
features = [cur_features[cur_attention_mask] for cur_features, cur_attention_mask in zip(features, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
attention_mask = [cur_attention_mask[cur_attention_mask] for cur_attention_mask, cur_attention_mask in zip(attention_mask, attention_mask)]
# rank & drop
for i in range(batch_size):
image_index = self.first_image_token_position[i]
if image_index == -1:
cur_input_embeds = features[i]
features_list.append(cur_input_embeds)
attention_mask_list.append(attention_mask[i])
labels_list.append(labels[i])
continue
if 'attention' in llm_compress_type:
# obtain current states
cur_key_states = key_states[i]
cur_query_states = query_states[i]
cur_eager_attention_mask = eager_attention_mask[i]
# choose last instruction token as query
if self.training:
answer_index = torch.where(labels[i] != -100)[0].tolist()
index_before_answer = []
for index in answer_index:
if labels[i][index-1] == -100:
index_before_answer.append(index-1)
if index_before_answer == []:
cur_input_embeds = features[i]
features_list.append(cur_input_embeds)
attention_mask_list.append(attention_mask[i])
labels_list.append(labels[i])
continue
index_before_answer=torch.tensor(index_before_answer,device=labels[0].device)
text_query_states = cur_query_states[:,index_before_answer,:]
text_eager_attention_mask = cur_eager_attention_mask[:,index_before_answer,:]
else:
prompt_total_len = self.text_prompt_lens[i] + image_tokens[i]
text_query_states = cur_query_states[:,prompt_total_len-1,:].unsqueeze(1)
text_eager_attention_mask = cur_eager_attention_mask[:,prompt_total_len-1,:].unsqueeze(1)
# calculate attention map
attn_weights = torch.matmul(text_query_states, cur_key_states.transpose(1, 2)) / math.sqrt(head_dim) #(num_head, text_token,seq_len)
attn_weights = attn_weights + text_eager_attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) #(num_head, text_token,seq_len)
attention_avg_head = torch.mean(attn_weights, dim=0) # ave across heads
attention_avg_head = attention_avg_head[:,image_index:image_index+image_tokens[i]] # select image token as keys
attention_avg_text = torch.mean(attention_avg_head, dim=0) # (576)
if llm_compress_type == 'attention':
top_rank_index = attention_avg_text.topk(keep_length[i]).indices
else:
raise NotImplementedError(llm_compress_type)
elif llm_compress_type == 'uniform':
top_rank_index = torch.linspace(0, image_tokens[i]-1, keep_length[i], dtype=torch.long)
else:
raise NotImplementedError(llm_compress_type)
top_rank_index = top_rank_index + image_index
top_rank_index= top_rank_index.sort().values
start_index = image_index + image_tokens[i]
new_input_embeds = torch.cat([features[i][ :image_index, :] ,features[i][ top_rank_index, :], features[i][start_index:, :]], dim=0)
new_labels = torch.cat([labels[i][ :image_index],labels[i][ top_rank_index], labels[i][start_index:]], dim=0)
new_attention_mask = torch.cat([attention_mask[i][:image_index], attention_mask[i][top_rank_index], attention_mask[i][start_index:]], dim=0)
features_list.append(new_input_embeds)
attention_mask_list.append(new_attention_mask)
labels_list.append(new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in features_list]
new_attention_mask = [x[:tokenizer_model_max_length] for x in attention_mask_list]
new_labels = [x[:tokenizer_model_max_length] for x in labels_list]
max_len = max(x.shape[0] for x in new_input_embeds)
# padding the sequences to form batch
embeds_padded=[]
labels_paded=[]
attention_mask_padded=[]
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len_emb=cur_new_embed.shape[0]
dif=max_len - cur_len_emb # padding to longest seq
cur_new_embed = torch.cat([cur_new_embed,torch.zeros((dif, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)],dim=0)
cur_new_labels = torch.cat([cur_new_labels,torch.full((dif,),IGNORE_INDEX,dtype=cur_new_labels.dtype, device=cur_new_labels.device)],dim=0)
cur_attention_mask = new_attention_mask[i]
cur_attention_mask = torch.cat([cur_attention_mask,torch.full((dif,),False, dtype=cur_attention_mask.dtype, device=cur_attention_mask.device)],dim=0)
embeds_padded.append(cur_new_embed)
labels_paded.append(cur_new_labels)
attention_mask_padded.append(cur_attention_mask)
cur_len = new_attention_mask[i].sum().item()
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(embeds_padded,dim=0)
new_input_embeds = new_input_embeds.to(features[0].dtype)
new_attention_mask = torch.stack(attention_mask_padded,dim=0)
new_labels = torch.stack(labels_paded,dim=0)
if _position_ids is None:
position_ids = None
if _labels is None:
new_labels = None
if _attention_mask is None:
new_attention_mask = None
else:
new_attention_mask = new_attention_mask.to(dtype=_attention_mask.dtype)
return position_ids, new_attention_mask, new_input_embeds, new_labels
else:
raise ValueError(f"Unexpected tokenizer_padding_side: {self.config.tokenizer_padding_side}")
class Qwen2ForCausalLM_Flash(Qwen2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Qwen2Model_Flash(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs, labels = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
# 在Qwen2RMSNorm类之前添加MixedDynamicCache类
class MixedDynamicCache(Cache):
"""
混合动态缓存,分别处理视觉和文本token的KV缓存
视觉token使用低秩压缩:k_pe + compressed_kv
文本token保持完整性能:key_states + value_states
缓存结构:
- vision_k_pe_cache: 视觉token的位置编码部分 [batch_size, num_heads, seq_len, pe_dim]
- vision_compressed_kv_cache: 视觉token的压缩KV [batch_size, num_heads, seq_len, lora_rank]
- text_key_cache: 文本token的完整key [batch_size, num_heads, seq_len, head_dim]
- text_value_cache: 文本token的完整value [batch_size, num_heads, seq_len, head_dim]
"""
def __init__(self, _distributed_cache_data: Iterable = None) -> None:
super().__init__()
# 视觉token缓存 (低秩压缩) - 对应DynamicCache的key_cache/value_cache结构
self.vision_k_pe_cache: List[torch.Tensor] = []
self.vision_compressed_kv_cache: List[torch.Tensor] = []
# 文本token缓存 (完整) - 对应DynamicCache的key_cache/value_cache结构
self.text_key_cache: List[torch.Tensor] = []
self.text_value_cache: List[torch.Tensor] = []
# 保持与DynamicCache相同的分布式数据处理逻辑
if _distributed_cache_data is not None:
for vision_k_pe, vision_compressed_kv, text_key, text_value in _distributed_cache_data:
self.vision_k_pe_cache.append(vision_k_pe)
self.vision_compressed_kv_cache.append(vision_compressed_kv)
self.text_key_cache.append(text_key)
self.text_value_cache.append(text_value)
@property
def seen_tokens(self) -> int:
"""Returns the number of tokens in the cache."""
return self.get_seq_length()
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
支持向后兼容的索引访问,类似DynamicCache的__getitem__
返回指定层的缓存:(vision_k_pe, vision_compressed_kv, text_key, text_value)
"""
if layer_idx < len(self):
return (
self.vision_k_pe_cache[layer_idx],
self.vision_compressed_kv_cache[layer_idx],
self.text_key_cache[layer_idx],
self.text_value_cache[layer_idx]
)
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
支持向后兼容的迭代,类似DynamicCache的__iter__
"""
for layer_idx in range(len(self)):
yield (
self.vision_k_pe_cache[layer_idx],
self.vision_compressed_kv_cache[layer_idx],
self.text_key_cache[layer_idx],
self.text_value_cache[layer_idx]
)
def __len__(self):
"""
支持向后兼容的长度查询,类似DynamicCache的__len__
返回缓存的层数
"""
return len(self.vision_k_pe_cache)
def update(
self,
vision_k_pe: Optional[torch.Tensor] = None,
vision_compressed_kv: Optional[torch.Tensor] = None,
text_key_states: Optional[torch.Tensor] = None,
text_value_states: Optional[torch.Tensor] = None,
layer_idx: int = 0,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
更新指定层的缓存,对齐DynamicCache的update逻辑和性能优化
"""
# 处理跳过的层 - 与DynamicCache保持一致的逻辑
if len(self.vision_k_pe_cache) <= layer_idx:
# 填充跳过的层,使用空tensor
for _ in range(len(self.vision_k_pe_cache), layer_idx):
self.vision_k_pe_cache.append(torch.tensor([]))
self.vision_compressed_kv_cache.append(torch.tensor([]))
self.text_key_cache.append(torch.tensor([]))
self.text_value_cache.append(torch.tensor([]))
# 添加当前层
self.vision_k_pe_cache.append(vision_k_pe if vision_k_pe is not None else torch.tensor([]))
self.vision_compressed_kv_cache.append(vision_compressed_kv if vision_compressed_kv is not None else torch.tensor([]))
self.text_key_cache.append(text_key_states if text_key_states is not None else torch.tensor([]))
self.text_value_cache.append(text_value_states if text_value_states is not None else torch.tensor([]))
else:
# 更新现有层 - 与DynamicCache相同的concat逻辑
if vision_k_pe is not None:
if not self.vision_k_pe_cache[layer_idx].numel(): # 使用numel()检查,与DynamicCache一致
self.vision_k_pe_cache[layer_idx] = vision_k_pe
else:
self.vision_k_pe_cache[layer_idx] = torch.cat([self.vision_k_pe_cache[layer_idx], vision_k_pe], dim=-2)
if vision_compressed_kv is not None:
if not self.vision_compressed_kv_cache[layer_idx].numel():
self.vision_compressed_kv_cache[layer_idx] = vision_compressed_kv
else:
self.vision_compressed_kv_cache[layer_idx] = torch.cat([self.vision_compressed_kv_cache[layer_idx], vision_compressed_kv], dim=-2)
if text_key_states is not None:
if not self.text_key_cache[layer_idx].numel():
self.text_key_cache[layer_idx] = text_key_states
else:
self.text_key_cache[layer_idx] = torch.cat([self.text_key_cache[layer_idx], text_key_states], dim=-2)
if text_value_states is not None:
if not self.text_value_cache[layer_idx].numel():
self.text_value_cache[layer_idx] = text_value_states
else:
self.text_value_cache[layer_idx] = torch.cat([self.text_value_cache[layer_idx], text_value_states], dim=-2)
return (
self.vision_k_pe_cache[layer_idx],
self.vision_compressed_kv_cache[layer_idx],
self.text_key_cache[layer_idx],
self.text_value_cache[layer_idx]
)
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""返回缓存序列长度,与DynamicCache保持一致的检查逻辑"""
is_empty_layer = (
len(self.vision_k_pe_cache) == 0 # no cache in any layer
or len(self.vision_k_pe_cache) <= layer_idx # skipped `layer_idx` and hasn't run a layer with cache after it
or (not self.vision_k_pe_cache[layer_idx].numel() and not self.text_key_cache[layer_idx].numel()) # the layer has no cache
)
if is_empty_layer:
return 0
vision_len = self.vision_k_pe_cache[layer_idx].shape[-2] if self.vision_k_pe_cache[layer_idx].numel() else 0
text_len = self.text_key_cache[layer_idx].shape[-2] if self.text_key_cache[layer_idx].numel() else 0
return vision_len + text_len
def get_max_length(self) -> Optional[int]:
"""返回最大序列长度,MixedDynamicCache没有最大限制,与DynamicCache保持一致"""
return None
def get_max_cache_shape(self) -> Optional[int]:
"""返回最大缓存长度,与DynamicCache保持一致"""
return None
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""
获取可用长度,与DynamicCache保持一致的实现
由于MixedDynamicCache没有大小限制,所有缓存都是可用的
"""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx)
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], ...]:
"""转换为传统缓存格式 - 已废弃,不再使用"""
raise NotImplementedError("Legacy cache format is no longer supported. Use MixedDynamicCache directly.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "MixedDynamicCache":
"""从传统缓存格式创建MixedDynamicCache - 已废弃,不再使用"""
raise NotImplementedError("Legacy cache format is no longer supported. Use MixedDynamicCache directly.")
def crop(self, max_length: int):
"""裁剪缓存到指定长度,与DynamicCache保持一致的逻辑"""
# 处理负数长度
if max_length < 0:
max_length = self.get_seq_length() - abs(max_length)
if self.get_seq_length() <= max_length:
return
self._seen_tokens = max_length
for idx in range(len(self.vision_k_pe_cache)):
# 只处理非空tensor,与DynamicCache保持一致
if self.vision_k_pe_cache[idx].numel():
self.vision_k_pe_cache[idx] = self.vision_k_pe_cache[idx][..., :max_length, :]
if self.vision_compressed_kv_cache[idx].numel():
self.vision_compressed_kv_cache[idx] = self.vision_compressed_kv_cache[idx][..., :max_length, :]
if self.text_key_cache[idx].numel():
self.text_key_cache[idx] = self.text_key_cache[idx][..., :max_length, :]
if self.text_value_cache[idx].numel():
self.text_value_cache[idx] = self.text_value_cache[idx][..., :max_length, :]
def batch_split(self, full_batch_size: int, split_size: int) -> List["MixedDynamicCache"]:
"""按批次大小分割当前实例,与DynamicCache保持一致的逻辑"""
out = []
for i in range(0, full_batch_size, split_size):
current_split = MixedDynamicCache()
current_split._seen_tokens = self._seen_tokens
current_split.vision_k_pe_cache = [tensor[i : i + split_size] for tensor in self.vision_k_pe_cache]
current_split.vision_compressed_kv_cache = [tensor[i : i + split_size] for tensor in self.vision_compressed_kv_cache]
current_split.text_key_cache = [tensor[i : i + split_size] for tensor in self.text_key_cache]
current_split.text_value_cache = [tensor[i : i + split_size] for tensor in self.text_value_cache]
out.append(current_split)
return out
@classmethod
def from_batch_splits(cls, splits: List["MixedDynamicCache"]) -> "MixedDynamicCache":
"""与batch_split相反的操作,与DynamicCache保持一致的逻辑"""
cache = cls()
for idx in range(len(splits[0])):
vision_k_pe_cache = [current.vision_k_pe_cache[idx] for current in splits if current.vision_k_pe_cache[idx].numel()]
vision_compressed_cache = [current.vision_compressed_kv_cache[idx] for current in splits if current.vision_compressed_kv_cache[idx].numel()]
text_key_cache = [current.text_key_cache[idx] for current in splits if current.text_key_cache[idx].numel()]
text_value_cache = [current.text_value_cache[idx] for current in splits if current.text_value_cache[idx].numel()]
# 合并非空缓存
vision_k_pe = torch.cat(vision_k_pe_cache, dim=0) if vision_k_pe_cache else None
vision_compressed = torch.cat(vision_compressed_cache, dim=0) if vision_compressed_cache else None
text_key = torch.cat(text_key_cache, dim=0) if text_key_cache else None
text_value = torch.cat(text_value_cache, dim=0) if text_value_cache else None
if any([vision_k_pe, vision_compressed, text_key, text_value]):
cache.update(vision_k_pe, vision_compressed, text_key, text_value, idx)
return cache
def batch_repeat_interleave(self, repeats: int):
"""在批次维度重复缓存,与DynamicCache保持一致"""
for layer_idx in range(len(self)):
if self.vision_k_pe_cache[layer_idx].numel():
self.vision_k_pe_cache[layer_idx] = self.vision_k_pe_cache[layer_idx].repeat_interleave(repeats, dim=0)
if self.vision_compressed_kv_cache[layer_idx].numel():
self.vision_compressed_kv_cache[layer_idx] = self.vision_compressed_kv_cache[layer_idx].repeat_interleave(repeats, dim=0)
if self.text_key_cache[layer_idx].numel():
self.text_key_cache[layer_idx] = self.text_key_cache[layer_idx].repeat_interleave(repeats, dim=0)
if self.text_value_cache[layer_idx].numel():
self.text_value_cache[layer_idx] = self.text_value_cache[layer_idx].repeat_interleave(repeats, dim=0)
def batch_select_indices(self, indices: torch.Tensor):
"""只保留批次维度中的指定索引,与DynamicCache保持一致"""
for layer_idx in range(len(self)):
if self.vision_k_pe_cache[layer_idx].numel():
self.vision_k_pe_cache[layer_idx] = self.vision_k_pe_cache[layer_idx][indices, ...]
if self.vision_compressed_kv_cache[layer_idx].numel():
self.vision_compressed_kv_cache[layer_idx] = self.vision_compressed_kv_cache[layer_idx][indices, ...]
if self.text_key_cache[layer_idx].numel():
self.text_key_cache[layer_idx] = self.text_key_cache[layer_idx][indices, ...]
if self.text_value_cache[layer_idx].numel():
self.text_value_cache[layer_idx] = self.text_value_cache[layer_idx][indices, ...]
# 保留一些MixedDynamicCache特有的辅助方法,但简化实现
def get_vision_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""获取视觉token的序列长度"""
if (len(self.vision_k_pe_cache) <= layer_idx or
not self.vision_k_pe_cache[layer_idx].numel()):
return 0
return self.vision_k_pe_cache[layer_idx].shape[-2]
def get_text_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""获取文本token的序列长度"""
if (len(self.text_key_cache) <= layer_idx or
not self.text_key_cache[layer_idx].numel()):
return 0
return self.text_key_cache[layer_idx].shape[-2]
def has_vision_cache(self, layer_idx: Optional[int] = 0) -> bool:
"""检查是否有视觉缓存"""
return (len(self.vision_k_pe_cache) > layer_idx and
self.vision_k_pe_cache[layer_idx].numel() > 0)
def has_text_cache(self, layer_idx: Optional[int] = 0) -> bool:
"""检查是否有文本缓存"""
return (len(self.text_key_cache) > layer_idx and
self.text_key_cache[layer_idx].numel() > 0)
|