Update README.md
Browse files
README.md
CHANGED
|
@@ -8,7 +8,9 @@ tags:
|
|
| 8 |
- trl
|
| 9 |
license: apache-2.0
|
| 10 |
language:
|
| 11 |
-
-
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Uploaded model
|
|
@@ -34,5 +36,58 @@ Training epoch:1
|
|
| 34 |
Authors
|
| 35 |
tsuchida rikuto
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- trl
|
| 9 |
license: apache-2.0
|
| 10 |
language:
|
| 11 |
+
- ja
|
| 12 |
+
datasets:
|
| 13 |
+
- kinokokoro/ichikara-instruction-003
|
| 14 |
---
|
| 15 |
|
| 16 |
# Uploaded model
|
|
|
|
| 36 |
Authors
|
| 37 |
tsuchida rikuto
|
| 38 |
|
| 39 |
+
How to Use
|
| 40 |
+
To use this model, run the code below
|
| 41 |
+
```python
|
| 42 |
+
!pip install -U bitsandbytes
|
| 43 |
+
!pip install -U transformers
|
| 44 |
+
!pip install -U accelerate
|
| 45 |
+
!pip install -U datasets
|
| 46 |
|
| 47 |
+
!pip install ipywidgets --upgrade
|
| 48 |
|
| 49 |
+
from transformers import (
|
| 50 |
+
AutoModelForCausalLM,
|
| 51 |
+
AutoTokenizer,
|
| 52 |
+
BitsAndBytesConfig,
|
| 53 |
+
)
|
| 54 |
+
import torch
|
| 55 |
+
from tqdm import tqdm
|
| 56 |
+
import json
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
model_name = "trikudayodayodayo/llm-jp-3-13b-it-1209_lora"
|
| 60 |
+
|
| 61 |
+
bnb_config = BitsAndBytesConfig(
|
| 62 |
+
load_in_4bit=True,
|
| 63 |
+
bnb_4bit_quant_type="nf4",
|
| 64 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 65 |
+
bnb_4bit_use_double_quant=False,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
HF_TOKEN="Type your HF_TOKEN"
|
| 69 |
+
|
| 70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 71 |
+
model_name,
|
| 72 |
+
quantization_config=bnb_config,
|
| 73 |
+
device_map="auto",
|
| 74 |
+
token = HF_TOKEN
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
|
| 78 |
+
|
| 79 |
+
input = "Type text here"
|
| 80 |
+
|
| 81 |
+
tokenized_input = tokenizer.encode(input, add_special_tokens=False, return_tensors="pt").to(model.device)
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model.generate(
|
| 84 |
+
tokenized_input,
|
| 85 |
+
max_new_tokens=100,
|
| 86 |
+
do_sample=False,
|
| 87 |
+
repetition_penalty=1.2
|
| 88 |
+
)[0]
|
| 89 |
+
|
| 90 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
| 91 |
+
|
| 92 |
+
print(output)
|
| 93 |
+
```
|