File size: 2,071 Bytes
11f7090 adaef39 11f7090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
language:
- en
- ko
- ja
- zh
---
# Tri-0.5B-Base
Tri-0.5B-Base is a \~500M parameter multilingual language model trained as an **early experimental run** before the Tri-7B training.
The model covers **English, Korean, Japanese, and Chinese**, with additional exposure to programming languages and mathematical reasoning.
Pretrained on \~1.26 trillion tokens, it serves as a lightweight base model for research, fine-tuning, and open-source community use - especially for advancing Korean LLM development.
## Model Summary
* Architecture: decoder-only Transformer (LLaMA-style)
* Parameters: \~472M (untied embeddings and LM head)
* Layers / hidden size / attention heads: 24 / 896 / 14
* Feedforward hidden size: 2,560 (SiLU-gated MLP)
* Context length: 4,096
* RoPE θ: 100,000
* Training precision: bfloat16
* Status: base pretraining only (no instruction tuning, no RLHF)
## Intended Use
* As a **foundation** for downstream fine-tuning and alignment.
* Research on multilingual pretraining and adaptation.
## Limitations
* Being a base model, outputs may be unsafe, incoherent, or factually incorrect.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
name = "trillionlabs/Tri-0.5B-Base"
tok = AutoTokenizer.from_pretrained(name)
model = AutoModelForCausalLM.from_pretrained(
name,
torch_dtype="bfloat16",
device_map="auto"
)
prompt = "Write a short paragraph about Hangul."
x = tok(prompt, return_tensors="pt").to(model.device)
y = model.generate(
**x,
max_new_tokens=128,
do_sample=True,
temperature=0.8,
top_p=0.95
)
print(tok.decode(y[0], skip_special_tokens=True))
```
## License
This model is released under the **Apache 2.0 License**.
See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
---
## Citation
If you use this model, please cite it as:
```
@misc{trillionlabs_tri05b_base_2025,
title = {Tri-0.5B-Base},
author = {Trillion Labs},
year = {2025},
note = {https://huggingface.co/trillionlabs/Tri-0.5B-Base}
}
``` |