File size: 5,949 Bytes
3563e0c ac0d906 b29a222 92cb774 b29a222 92cb774 6da947e 92cb774 6da947e b29a222 6da947e 4436a91 92cb774 6da947e b29a222 4436a91 92cb774 4436a91 b29a222 3563e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: cc-by-nc-3.0
---
# 🧬 ViDRiP-LLaVA: A Dataset and Benchmark for Diagnostic Reasoning from Pathology Videos
**ViDRiP-LLaVA** is a vision-language framework designed for instruction-based diagnostic reasoning using both image patches and video clips from pathology slides. It builds on LLaVA and extends it to the medical domain with domain-specific datasets and fine-tuned models.
🧠 Introducing our ViDRiP-LLaVA: the first multimodal model for diagnostic reasoning in pathology through video-based instruction. 🔬📽️
Our method leverages chain-of-thought (CoT) prompting to distill the reasoning capabilities of LLMs. ViDRiP-LLaVA generates both detailed histological descriptions and final diagnoses, simulating how pathologists analyze and sign out cases.
📚 Trained on 4,278 instructional video pairs
⚙️ Combines single-image + clip transfer and fine-tuning on segmented diagnostic videos
---
<p align="center" width="100%">
<img src="assets/Network.png" width="80%" height="80%">
</p>
## 📚 Video Datasets
### 🎥 Released Video Format
All clips are:
- **Cleaned** using a Visual Data Refinement pipeline (temporal trimming + YoloPath filtering + OCR exclusion + inpainting)
- **Downsampled** to **1–5 FPS** to reduce file size and support fair-use compliance
- **Muted** to avoid redistribution of original YouTube audio
These steps preserve diagnostic signal while respecting the rights of YouTube creators and complying with [YouTube’s Terms of Service](https://www.youtube.com/t/terms).
### 🔍 Training vs. Public Release Notice
The ViDRiP-LLaVA models were trained on an internal dataset version that included:
- Full-frame-rate video clips
- Visual content **prior to OCR filtering**
All **evaluations** (including those in our benchmark) are conducted using the **publicly released test set**, ensuring full reproducibility.
### 🔹 [ViDRiP_Instruct_Train](https://huggingface.co/datasets/trinhvg/ViDRiP_Instruct_Train)
The videos data is ~ 60 GB:
[//]: # (### 🔹 [ViDRiP_Instruct_Train_Video_GoogleDrive](https://drive.google.com/drive/folders/1oxZlaJpE7PGDYt32LeoGgIzwEvWdnupY?usp=sharing))
### 🔹 [ViDRiP_Instruct_Train_Video_Hugging Face](https://huggingface.co/datasets/trinhvg/ViDRiP_Instruct_Train) (There is 6 zip files)
- 4,000+ instruction-style samples
- Each sample includes:
- A pathology video clip
- A diagnostic question
- A multi-turn reasoning answer
- Format: JSON + MP4
- Croissant-compliant metadata for structured use
### 🔹 [ViDRiP_Instruct_Test](https://huggingface.co/datasets/trinhvg/ViDRiP_Instruct_Test)
### 🔹 [ViDRiP_Instruct_Test_Video](https://drive.google.com/drive/folders/1oxZlaJpE7PGDYt32LeoGgIzwEvWdnupY?usp=sharing)
- Held-out test set of diagnostic Q&A pairs
- Used for benchmarking reasoning performance
## 📚 Image Datasets
We use publicly available datasets: Quilt-LLaVA and PathAsst.
Please refer to their respective repositories for download instructions.
- [**Quilt-LLaVA**](https://github.com/aldraus/quilt-llava): A vision-language dataset for pathology adapted from LLaVA.
- [**PathAsst**](https://github.com/superjamessyx/Generative-Foundation-AI-Assistant-for-Pathology): A generative assistant for pathology with curated image-text pairs.
---
## 🤖 Models
### 🔸 [ViDRiP_LLaVA_video](https://huggingface.co/trinhvg/ViDRiP_LLaVA_video)
- Vision-language model for video-based diagnostic reasoning
- Trained on `ViDRiP_Instruct_Train`
- Suitable for:
- Medical VQA
- Instructional explanation generation
- Educational pathology summarization
### 🔸 [ViDRiP_LLaVA_image](https://huggingface.co/trinhvg/ViDRiP_LLaVA_image)
- Vision-language model for patch-based diagnostic prompts
- Useful for pathology captioning and single-frame inference
## 🚀 Quickstart
### 🔧 Fine-tuning the model on video dataset
```bash
./scripts/train/finetune_ov_video.sh
```
### 🪄 Fine-tuning with LoRA
```bash
./scripts/train/finetune_ov_video_lora.sh
```
🔗 Merge LoRA weights
```bash
./scripts/train/merge_lora_weights.py
```
### 🧪 Usage / Demo
```bash
./doc/ViDRiP_LLaVA_trial.py
```
### 🔧 Evaluate on our video dataset
We use [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) to evaluate the performance of video diagnostic reasoning.
To benchmark `ViDRiP-LLaVA` and compare it with other models:
1. Clone the `lmms_eval` repo
2. Copy our evaluation task folder into it:
```bash
cp -r lmms_eval/tasks/ViDRiP_Instruct_Test /path/to/lmms_eval/tasks/
```
You can then run evaluation using the standard lmms_eval CLI interface.
### Citation:
Coming soon
## 📄 Usage and License Notices
**ViDRiP-LLaVA** (Vision-language Diagnostic Reasoning in Pathology), including its dataset, code, and model checkpoints, is released strictly for **non-commercial research purposes only**.
### 📁 Licenses
* **Dataset:**
Licensed under [**CC BY-NC-ND 3.0**](https://creativecommons.org/licenses/by-nc-nd/3.0/) (Attribution–NonCommercial–NoDerivatives)
* **Code and pretrained models:**
Licensed under [**CC BY-NC 3.0**](https://creativecommons.org/licenses/by-nc/3.0/) (Attribution–NonCommercial)
### ⚙️ Dependencies and Components
This project may incorporate or build upon resources such as **LLaVA-Next**, **QUILT-1M**, **LLaMA**, **PathAsst**, and **GPT-4**, each subject to their own licenses and **Terms of Use**.
### 🎥 Source Acknowledgment
ViDRiP-LLaVA includes data derived from **public educational pathology videos hosted on YouTube**.
All content usage complies with [**YouTube’s Terms of Service**](https://www.youtube.com/t/terms), and the **intellectual property rights of the original pathologist creators are fully acknowledged and respected**.
### 🚫 Restrictions
* Not for **commercial use**
* Not to be used in **clinical care** or **medical decision-making**
* For **academic research, development, and evaluation only** |