File size: 4,539 Bytes
127dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import ast
import asyncio
import json
import re
import time
from concurrent.futures import ThreadPoolExecutor

import numpy as np
from tqdm import tqdm

from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
from sglang.utils import download_and_cache_file, dump_state_text, read_jsonl

INVALID = -9999999


def get_one_example(lines, i, include_answer):
    ret = "Question: " + lines[i]["question"] + "\nAnswer:"
    if include_answer:
        ret += " " + lines[i]["answer"]
    return ret


def get_few_shot_examples(lines, k):
    ret = ""
    for i in range(k):
        ret += get_one_example(lines, i, True) + "\n\n"
    return ret


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
    numbers = re.findall(r"\d+", answer_str)
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


def main(args):
    # Select backend
    call_generate = get_call_generate(args)

    # Read data
    url = "https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl"
    filename = download_and_cache_file(url)
    lines = list(read_jsonl(filename))

    # Construct prompts
    num_questions = args.num_questions
    num_shots = args.num_shots
    few_shot_examples = get_few_shot_examples(lines, num_shots)

    questions = []
    labels = []
    for i in range(len(lines[:num_questions])):
        questions.append(get_one_example(lines, i, False))
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)

    states = [None] * len(labels)

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
            answer = call_generate(
                prompt=few_shot_examples + questions[i],
                temperature=0,
                max_tokens=256,
                stop=["Question", "Assistant:", "<|separator|>"],
            )
            states[i] = answer

        tic = time.time()
        if args.parallel == 1:
            for i in tqdm(range(len(questions))):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                list(
                    tqdm(
                        executor.map(get_one_answer, list(range(len(questions)))),
                        total=len(questions),
                    )
                )

    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(questions), batch_size):
                tasks = []
                for q in questions[i : i + batch_size]:
                    tasks.append(
                        call_generate(
                            few_shot_examples + q,
                            temperature=0,
                            max_tokens=256,
                            stop="Question",
                        )
                    )
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
                    states[i + j] = rets[j]

        tic = time.time()
        asyncio.run(batched_call(batch_size=args.parallel))
    latency = time.time() - tic

    preds = []
    for i in range(len(states)):
        preds.append(get_answer_value(states[i]))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)

    # Print results
    print(f"Accuracy: {acc:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Latency: {latency:.3f} s")

    # Dump results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--num-shots", type=int, default=5)
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=200)
    args = add_common_other_args_and_parse(parser)
    main(args)