File size: 1,575 Bytes
56c27a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TabMWPDataset, TabMWPEvaluator

# None of the TabMWP dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://github.com/lupantech/PromptPG/tree/main

input_format='TQ'
output_format='A'
elements = {'Q': 'Question: {question}',
            'T': 'Table: {table}',
            'S': 'Solution: {solution}',
            'A': 'Answer: The answer is {answer}.',
            'AS': 'Answer: The answer is {answer}. BECAUSE: {solution}',
            'SA': 'Answer: {solution} The answer is {answer}.'}


TabMWP_reader_cfg = dict(
    input_columns=['question', 'table'],
    output_column='test_elements',
    train_split='dev',
    )

TabMWP_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template=dict(
            round=[
                dict(
                    role='HUMAN',
                    prompt= '\n'.join(elements[label] for label in input_format)
                ),
            ],
        ),
    ),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=GenInferencer),
)

TabMWP_eval_cfg = dict(
    evaluator=dict(type=TabMWPEvaluator)
)

TabMWP_datasets = [
    dict(
        type=TabMWPDataset,
        path='./data/tabmwp/',
        reader_cfg=TabMWP_reader_cfg,
        infer_cfg=TabMWP_infer_cfg,
        eval_cfg=TabMWP_eval_cfg,)
]