vlm_clone_2 / groundingLMM /train_ft.py
tuandunghcmut's picture
Add files using upload-large-folder tool
c7d7da9 verified
raw
history blame
33 kB
"""
train_ft.py - GLaMM Training on Single Dataset Type
Trains the GLaMM model on one dataset type (Caption, Region, or Segmentation) at a time, iterating thoroughly through
the chosen dataset. This targeted approach is optimal for specialized training on specific downstream task.
"""
import os
import sys
import time
import tqdm
import random
import torch
import argparse
import deepspeed
import numpy as np
import transformers
from functools import partial
from torch.utils.data import ConcatDataset
from peft import LoraConfig, get_peft_model
from torch.utils.tensorboard import SummaryWriter
from model.GLaMM import GLaMMForCausalLM
from model.llava import conversation as conversation_lib
from dataset.dataset import custom_collate_fn
from tools.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, AverageMeter, ProgressMeter, dict_to_cuda,
Summary, intersectionAndUnionGPU)
from dataset.gcg_datasets.GranDf_gcg_ds import GranDfDataset, OpenPsgGCGDataset, Flickr30kGCGDataset, RefCOCOgGCGDataset
from dataset.caption_datasets.COCO_Caption_ds import CocoCapDataset
from dataset.caption_datasets.LLavaInstruct_vqa_ds import LLaVAInstructDataset
from dataset.region_datasets.RefCOCO_VG_Region_ds import (RefCocoRegDataset, RefCocoGRegDataset, RefCocoPRegDataset,
VisualGenomeRegDataset)
from dataset.region_datasets.Flickr_Region_ds import Flickr30kRegDataset
from dataset.segm_datasets.Semantic_Segm_ds import SemanticSegmDataset
from dataset.segm_datasets.RefCOCO_Segm_ds import ReferSegmDataset
def parse_args(args):
parser = argparse.ArgumentParser(description="GLaMM Model Training")
# Model-specific settings
parser.add_argument("--version", default="MBZUAI/GLaMM-GranD-Pretrained")
parser.add_argument("--vision_pretrained", default="./checkpoints/sam_vit_h_4b8939.pth", type=str)
parser.add_argument("--vision-tower", default="openai/clip-vit-large-patch14-336", type=str)
parser.add_argument("--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"])
parser.add_argument("--tune_mm_mlp_adapter", action="store_true")
parser.add_argument("--freeze_mm_mlp_adapter", action="store_true")
parser.add_argument("--mm_use_im_start_end", action="store_true", default=True)
parser.add_argument("--out_dim", default=256, type=int)
parser.add_argument("--image_size", default=1024, type=int, help="Image size for grounding image encoder")
parser.add_argument("--model_max_length", default=1536, type=int)
parser.add_argument("--lora_target_modules", default="q_proj,v_proj", type=str)
parser.add_argument("--with_region", action="store_true", default=True)
parser.add_argument("--mm_vision_select_layer", default=-2, type=int)
parser.add_argument("--pretrain_mm_mlp_adapter", default="", type=str)
parser.add_argument("--precision", default='bf16', type=str)
# Dataset settings
parser.add_argument("--use_cap_data", action="store_true", help="Use caption data")
parser.add_argument("--use_reg_data", action="store_true", help="Use region data")
parser.add_argument("--use_segm_data", action="store_true", help="Use segmentation data")
parser.add_argument("--dataset_dir", default="./data", type=str)
parser.add_argument("--seg_dataset", default="Semantic_Segm||Refer_Segm||RefCoco_GCG||PSG_GCG||Flickr_GCG||GranDf_GCG",
type=str, help="Choose from: Semantic_Segm, Refer_Segm, RefCoco_GCG, GranDf_GCG, PSG_GCG, Flickr_GCG")
parser.add_argument("--segm_sample_rates", default="5,4,3,3,3,1", type=str)
parser.add_argument("--reg_dataset", default="RefCoco_Reg||RefCocoG_Reg||RefCocoP_Reg||VisGen_Reg",
type=str, help="Choose from: RefCoco_Reg, RefCocoG_Reg, RefCocoP_Reg, VisGen_Reg, Flickr_Reg")
parser.add_argument("--reg_sample_rates", default="1,1,1,1", type=str)
parser.add_argument("--cap_dataset", default="CocoCap||LLaVaInstruct", type=str, help="Choose from: CocoCap, LLaVaInstruct")
parser.add_argument("--cap_sample_rates", default="1,1", type=str)
parser.add_argument("--semantic_segm_data", default="ade20k||cocostuff||pascal_part||paco_lvis||mapillary", type=str)
parser.add_argument("--refer_segm_data", default="refcoco||refcoco+||refcocog||refclef", type=str)
parser.add_argument("--vqa_data", default="llava_instruct_150k", type=str)
parser.add_argument("--num_classes_per_sample", default=3, type=int)
# Training settings
parser.add_argument("--pretrained", action="store_true")
parser.add_argument("--resume", default="", type=str)
parser.add_argument("--auto_resume", action="store_true")
parser.add_argument("--weight", default="", type=str)
parser.add_argument("--lr", default=0.0003, type=float)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--steps_per_epoch", default=500, type=int)
parser.add_argument("--batch_size", default=2, type=int, help="batch size per device per step")
parser.add_argument("--grad_accumulation_steps", default=10, type=int)
parser.add_argument("--val_batch_size", default=1, type=int)
parser.add_argument("--workers", default=2, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=16, type=int)
parser.add_argument("--lora_dropout", default=0.05, type=float)
parser.add_argument("--ce_loss_weight", default=1.0, type=float)
parser.add_argument("--dice_loss_weight", default=0.5, type=float)
parser.add_argument("--bce_loss_weight", default=2.0, type=float)
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.95, type=float)
parser.add_argument("--gradient_checkpointing", action="store_true", default=True)
parser.add_argument("--train_mask_decoder", action="store_true", default=True)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument("--print_freq", default=1, type=int)
parser.add_argument("--start_epoch", default=0, type=int)
parser.add_argument("--local_rank", default=0, type=int, help="node rank")
# Evaluation settings
parser.add_argument("--val_dataset", default="RefCOCOgRegVal", type=str,
help="Choose from: CocoCapVal, RefCOCOgRegVal, VisGenomeRegVal, RefCOCOgSegmVal, PsgGCGVal, "
"RefCocoGCGVal, FlickrGCGVal")
parser.add_argument("--mask_validation", action="store_true")
parser.add_argument("--no_eval", action="store_true")
parser.add_argument("--eval_only", action="store_true")
# Experiment settings
parser.add_argument("--log_base_dir", default="./output", type=str)
parser.add_argument("--exp_name", default="GlamFinetuneOS", type=str)
return parser.parse_args(args)
def initialize_environment(args):
""" Set up logging and model directories. """
args.log_dir = os.path.join(args.log_base_dir, args.exp_name)
if args.local_rank == 0:
os.makedirs(args.log_dir, exist_ok=True)
return SummaryWriter(args.log_dir)
return None
def setup_tokenizer_and_special_tokens(args):
""" Load tokenizer and add special tokens. """
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.version, model_max_length=args.model_max_length, padding_side="right", use_fast=False
)
print('\033[92m' + "---- Initialized tokenizer from: {} ----".format(args.version) + '\033[0m')
tokenizer.pad_token = tokenizer.unk_token
if not args.pretrained:
if args.use_mm_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
# modifications specific for regions
reg_tokens = ['<bbox>', '<point>']
# Adding special tokens for pixel grounding
segmentation_tokens = ['[SEG]']
# Adding tokens for GCG
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
tokenizer.add_tokens(special_tokens, special_tokens=True)
args.bbox_token_idx = tokenizer("<bbox>", add_special_tokens=False).input_ids[0]
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
args.bop_token_idx = tokenizer("<p>", add_special_tokens=False).input_ids[0]
args.eop_token_idx = tokenizer("</p>", add_special_tokens=False).input_ids[0]
return tokenizer
def initialize_model(args, tokenizer):
""" Initialize the GLaMM model. """
model_args = {k: getattr(args, k) for k in
["train_mask_decoder", "out_dim", "ce_loss_weight", "dice_loss_weight", "bce_loss_weight",
"seg_token_idx", "vision_pretrained", "vision_tower", "use_mm_start_end", "mm_vision_select_layer",
"pretrain_mm_mlp_adapter", "tune_mm_mlp_adapter", "freeze_mm_mlp_adapter", "mm_use_im_start_end",
"with_region", "bbox_token_idx", "eop_token_idx", "bop_token_idx"]}
model_args["num_level_reg_features"] = 4
model = GLaMMForCausalLM.from_pretrained(
args.version, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, **model_args
)
print('\033[92m' + "---- Initialized model from: {} ----".format(args.version) + '\033[0m')
# Configure model tokens
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return model
def prepare_model_for_training(model, tokenizer, args):
# Enable input gradients
model.enable_input_require_grads()
model.gradient_checkpointing_enable()
# Initialize vision tower
print(
'\033[92m' + "---- Initialized Global Image Encoder (vision tower) from: {} ----".format(
args.vision_tower
) + '\033[0m'
)
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch.bfloat16, device=args.local_rank)
# Initialize GLaMM model and adjust requires_grad
if not args.pretrained:
model.get_model().initialize_glamm_model(model.get_model().config)
else:
for param in model.get_model().grounding_encoder.parameters():
param.requires_grad = False
if model.get_model().config.train_mask_decoder:
model.get_model().grounding_encoder.mask_decoder.train()
for param in model.get_model().grounding_encoder.mask_decoder.parameters():
param.requires_grad = True
# Projection layer
model.get_model().text_hidden_fcs.train()
for param in model.get_model().text_hidden_fcs.parameters():
param.requires_grad = True
# Set requires_grad for vision tower and mm projector
for p in vision_tower.parameters():
p.requires_grad = False
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
# Set requires_grad based on LoRA training
lora_r = args.lora_r
if lora_r == 0:
for p in model.get_model().layers.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
# Configure conversation library
conversation_lib.default_conversation = conversation_lib.conv_templates[args.conv_type]
# Configure LoRA if applicable
if lora_r > 0:
lora_config = setup_lora_config(model, args)
model = get_peft_model(model, lora_config)
# Resize token embeddings
model.resize_token_embeddings(len(tokenizer))
# Make certain modules trainable
set_trainable_modules(model)
def setup_lora_config(model, args):
""" Configure LoRA settings for the model. """
def find_proj_layers(model, target_modules):
""" Identify projection layers in the model for LoRA adaptation. """
linear_cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if (isinstance(module, linear_cls) and all(
x not in name for x in ["grounding_encoder", "vision_tower", "mm_projector", "text_hidden_fcs"]
) and any(x in name for x in target_modules)):
lora_module_names.add(name)
return sorted(list(lora_module_names))
# Extracting LoRA target modules
lora_target_modules = args.lora_target_modules.split(",")
lora_module_names = find_proj_layers(model, lora_target_modules)
# Configuring LoRA
lora_config = LoraConfig(
r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=lora_module_names, lora_dropout=args.lora_dropout,
bias="none", task_type="CAUSAL_LM"
)
return lora_config
def set_trainable_modules(model):
""" Make specified modules in the model trainable. """
trainable_modules = ["lm_head", "embed_tokens", "mask_decoder", "text_hidden_fcs", "region_encoder"]
for name, param in model.named_parameters():
if any(module in name for module in trainable_modules):
print(f"Making trainable: {name}, Shape: {param.shape}")
param.requires_grad = True
def count_parameters(model):
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('\033[92m' + "---- Total parameters: ----{}".format(total_params) + '\033[0m')
print('\033[92m' + "---- Trainable parameters: ----{}".format(trainable_params) + '\033[0m')
count_parameters(model)
def initialize_datasets_and_loaders(args, tokenizer):
world_size = torch.cuda.device_count()
args.distributed = world_size > 1
# Common dataset arguments
common_ds_args = {"dataset_dir": args.dataset_dir, "tokenizer": tokenizer,
"global_image_encoder": args.vision_tower,
"epoch_samples": args.batch_size * args.grad_accumulation_steps * args.steps_per_epoch * world_size,
"precision": args.precision, "image_size": args.image_size,
"num_classes_per_sample": args.num_classes_per_sample}
cap_dataset_classes = {"CocoCap": CocoCapDataset,
"LLaVaInstruct": LLaVAInstructDataset,
}
reg_dataset_classes = {"RefCoco_Reg": RefCocoRegDataset,
"RefCocoG_Reg": RefCocoGRegDataset,
"RefCocoP_Reg": RefCocoPRegDataset,
"VisGen_Reg": VisualGenomeRegDataset,
"Flickr_Reg": Flickr30kRegDataset,
}
seg_dataset_classes = {"Semantic_Segm": SemanticSegmDataset,
"Refer_Segm": ReferSegmDataset,
"PSG_GCG": OpenPsgGCGDataset,
"RefCoco_GCG": RefCOCOgGCGDataset,
"GranDf_GCG": GranDfDataset,
"Flickr_GCG": Flickr30kGCGDataset,
}
# Train datasets
if args.use_cap_data:
train_datasets = [cap_dataset_classes[ds_name](**common_ds_args, random_sampling=False)
for ds_name in args.cap_dataset.split("||")]
elif args.use_reg_data:
train_datasets = [reg_dataset_classes[ds_name](**common_ds_args, random_sampling=False)
for ds_name in args.reg_dataset.split("||")]
elif args.use_segm_data:
train_datasets = []
for ds_name in args.seg_dataset.split('||'):
seg_dataset_class = seg_dataset_classes.get(ds_name)
if seg_dataset_class:
if seg_dataset_class == ReferSegmDataset:
all_datasets = args.refer_segm_data.split("||")
for d in all_datasets:
dataset_class = seg_dataset_class(**common_ds_args, random_sampling=False, refer_segm_data=d)
dataset_class._set_len(len(dataset_class.refer_segm_data[d]['images']))
train_datasets.append(dataset_class)
elif seg_dataset_class == SemanticSegmDataset:
all_datasets = args.semantic_segm_data.split("||")
for d in all_datasets:
dataset_class = seg_dataset_class(**common_ds_args, random_sampling=False, refer_segm_data=d)
dataset_class._set_len(len(dataset_class.semantic_segm_data[d]['images']))
train_datasets.append(dataset_class)
else:
train_datasets.append(seg_dataset_class(**common_ds_args))
else:
train_datasets = []
# Assert that exactly one dataset type is set
dataset_types_set = sum([args.use_cap_data, args.use_reg_data, args.use_segm_data])
assert dataset_types_set == 1, "Exactly one dataset type must be set"
world_size = torch.cuda.device_count()
# Summing lengths of all datasets
total_length = sum(len(dataset) for dataset in train_datasets)
print(f"Training with {total_length} examples.")
# Calculate steps per epoch
effective_batch_size = args.batch_size * args.grad_accumulation_steps * world_size
steps_per_epoch = total_length // effective_batch_size
# modify steps per epoch
args.steps_per_epoch = steps_per_epoch
# Concatenating datasets
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
# Validation datasets
val_datasets = []
if not args.no_eval:
val_dataset_classes = {'CocoCapVal': CocoCapDataset,
'RefCOCOgRegVal': RefCocoGRegDataset,
'VisGenomeRegVal': VisualGenomeRegDataset,
'RefCOCOgSegmVal': ReferSegmDataset,
'PsgGCGVal': OpenPsgGCGDataset,
'RefCocoGCGVal': RefCOCOgGCGDataset,
'FlickrGCGVal': Flickr30kGCGDataset,
}
for val_dataset_name in args.val_dataset.split('|'):
val_dataset_class = val_dataset_classes.get(val_dataset_name)
if val_dataset_class:
if val_dataset_class == ReferSegmDataset:
# Modify this if other datasets in refer_segm_data need to be included in val
refer_segm_data = 'refcocog'
all_datasets = refer_segm_data.split("||")
for d in all_datasets:
val_dataset_class = val_dataset_class(
**common_ds_args, validation=True, refer_segm_data=d, split='val')
val_dataset_class._set_len(len(val_dataset_class.refer_segm_data[d]['images']))
val_datasets.append(val_dataset_class)
else:
val_datasets.append(val_dataset_class(**common_ds_args, validation=True))
return train_dataset, val_datasets
def setup_data_loaders(args, train_dataset, val_datasets, tokenizer):
sampler_args = {"shuffle": True, "drop_last": False}
train_loader_args = {"batch_size": args.batch_size, "shuffle": False, "num_workers": args.workers,
"pin_memory": False}
val_loader_args = {"batch_size": args.val_batch_size, "shuffle": False, "num_workers": args.workers,
"pin_memory": False}
collate_fn_args_train = partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank,
inference=False
)
inference_mode = args.mask_validation
collate_fn_args_val = partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank,
inference=inference_mode
)
# Training loaders
train_loader = torch.utils.data.DataLoader(
train_dataset, sampler=torch.utils.data.distributed.DistributedSampler(
train_dataset, **sampler_args
), collate_fn=collate_fn_args_train, **train_loader_args
)
# Validation loader
val_loader = None
if val_datasets:
combined_val_datasets = ConcatDataset(val_datasets)
val_loader = torch.utils.data.DataLoader(
combined_val_datasets, **val_loader_args, collate_fn=collate_fn_args_val,
sampler=torch.utils.data.distributed.DistributedSampler(combined_val_datasets, **sampler_args), )
return train_loader, val_loader
def initialize_deepspeed(model, tokenizer, args):
ds_config = {"train_micro_batch_size_per_gpu": args.batch_size,
"gradient_accumulation_steps": args.grad_accumulation_steps,
"optimizer": {"type": "AdamW", "params": {"lr": args.lr, "weight_decay": 0.0,
"betas": (args.beta1, args.beta2)}},
"scheduler": {"type": "WarmupDecayLR",
"params": {"total_num_steps": args.epochs * args.steps_per_epoch, "warmup_min_lr": 0,
"warmup_max_lr": args.lr, "warmup_num_steps": 100, "warmup_type": "linear"}},
"fp16": {"enabled": args.precision == "fp16"}, "bf16": {"enabled": args.precision == "bf16"},
"gradient_clipping": 1.0,
"zero_optimization": {"stage": 2, "contiguous_gradients": True, "overlap_comm": True,
"reduce_scatter": True, "reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8}, }
model_engine, optimizer, _, scheduler = deepspeed.initialize(
model=model, model_parameters=model.parameters(), collate_fn=partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank
), config=ds_config
)
return model_engine, optimizer, scheduler
def resume_training_from_checkpoint(model_engine, args):
if args.auto_resume and not args.resume:
resume = os.path.join(args.log_dir, "ckpt_model")
if os.path.exists(resume):
args.resume = resume
if args.resume:
load_path, client_state = model_engine.load_checkpoint(args.resume)
with open(os.path.join(args.resume, "latest"), "r") as f:
ckpt_dir = f.readlines()[0].strip()
args.start_epoch = int(ckpt_dir.replace("global_step", "")) // args.steps_per_epoch
print(f"Resume training from {args.resume}, start from epoch {args.start_epoch}")
def main(args):
tokenizer = setup_tokenizer_and_special_tokens(args)
model = initialize_model(args, tokenizer)
prepare_model_for_training(model, tokenizer, args)
train_dataset, val_datasets = initialize_datasets_and_loaders(args, tokenizer)
model_engine, optimizer, scheduler = initialize_deepspeed(model, tokenizer, args)
resume_training_from_checkpoint(model_engine, args)
train_loader, val_loader = setup_data_loaders(args, train_dataset, val_datasets, tokenizer)
dataset_iter = iter(train_loader)
writer = initialize_environment(args)
if args.eval_only:
cur_val_loss = validate_model_performance(val_loader, model_engine, 0, writer, args)[0]
exit()
epoch_seeds = [random.randint(0, 100000) for _ in range(args.epochs)]
best_giou, best_ciou, best_val_loss = 0.0, 0.0, np.inf
for epoch in range(args.start_epoch, args.epochs):
random.seed(epoch_seeds[epoch])
dataset_iter = train(train_loader, model_engine, epoch, scheduler, writer, dataset_iter, args)
if args.mask_validation:
giou, ciou = validate_model_performance(val_loader, model_engine, epoch, writer, args)
is_best = giou > best_giou
best_giou = max(giou, best_giou)
best_ciou = ciou if is_best else best_ciou
if args.local_rank == 0: # Log the progress
print(f"Epoch: {epoch}, giou: {giou}, ciou: {ciou}, best_giou: {best_giou}, best_ciou: {best_ciou}")
save_checkpoint(model_engine, args, epoch, 'giou-ciou', f"{giou:.4f}-{ciou:.4f}", is_best)
else:
cur_val_loss = validate_model_performance(val_loader, model_engine, epoch, writer, args)
is_best = cur_val_loss < best_val_loss
best_val_loss = min(cur_val_loss, best_val_loss)
if args.local_rank == 0: # Log the progress
print(f"Epoch: {epoch}, Current Validation Loss: {cur_val_loss:.4f}, Best Validation Loss: {best_val_loss:}")
save_checkpoint(model_engine, args, epoch, 'loss', f"{cur_val_loss:.4f}", is_best)
def save_checkpoint(model_engine, args, epoch, metric_name, metric_value, is_best):
""" Saves the model checkpoint. """
# If the checkpoint is the best, save it in ckpt_model_best, else in ckpt_model_last_epoch
save_dir_name = "ckpt_model_best" if is_best else "ckpt_model_last_epoch"
save_dir = os.path.join(args.log_dir, save_dir_name)
# Ensure the directory exists
if args.local_rank == 0:
os.makedirs(save_dir, exist_ok=True)
ckpt_filename = f"epoch_{epoch}_val_{metric_name}_{metric_value}.pth"
torch.save({"epoch": epoch, f"val_{metric_name}": metric_value}, os.path.join(save_dir, ckpt_filename))
torch.distributed.barrier()
model_engine.save_checkpoint(save_dir)
def train(data_loader, model, epoch, scheduler, writer, dataset_iter, args):
"""Main training loop."""
def get_next_input(iterator, data_loader):
"""Retrieve next input from the iterator, or reinitialize if necessary."""
try:
return next(iterator), iterator
except StopIteration:
new_iterator = iter(data_loader)
return next(new_iterator), new_iterator
def log_progress():
"""Log training progress."""
if global_step % args.print_freq == 0:
if args.distributed:
for tracker in trackers.values():
tracker.all_reduce()
if args.local_rank == 0:
progress.display(global_step + 1)
for key, tracker in trackers.items():
writer.add_scalar(f"train/{key}", tracker.avg, global_step)
writer.add_scalar("metrics/total_secs_per_batch", batch_time.avg, global_step)
writer.add_scalar("metrics/data_secs_per_batch", data_time.avg, global_step)
for tracker in trackers.values():
tracker.reset()
batch_time = AverageMeter("Time", ":.4f")
data_time = AverageMeter("Data", ":.4f")
trackers = {"loss": AverageMeter("Loss", ":.4f"),
"ce_loss": AverageMeter("CeLoss", ":.4f"),
"mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"),
"mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"),
"mask_loss": AverageMeter("MaskLoss", ":.4f")}
progress = ProgressMeter(args.steps_per_epoch, list(trackers.values()), prefix=f"Epoch: [{epoch}]")
model.train()
end = time.time()
for global_step in range(args.steps_per_epoch):
for _ in range(args.grad_accumulation_steps):
# Select data loader based on step choice
data_batch, new_iter = get_next_input(dataset_iter, data_loader)
dataset_iter = new_iter
data_time.update(time.time() - end)
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
if data_batch[key] is not None:
data_batch[key] = data_batch[key].bfloat16()
output_dict = model(**data_batch)
# Update training metrics
for key, tracker in trackers.items():
if key in output_dict:
tracker.update(output_dict[key].item(), data_batch["global_enc_images"].size(0))
model.backward(output_dict["loss"])
model.step()
batch_time.update(time.time() - end)
end = time.time()
log_progress()
if global_step != 0:
curr_lr = scheduler.get_last_lr()
if args.local_rank == 0:
writer.add_scalar("train/lr", curr_lr[0], global_step)
return dataset_iter
def validate_model_performance(validation_loader, training_model, current_epoch, tensorboard_writer, args):
if args.mask_validation:
# For use with only segmentation/GCG type datasets
trackers = {"intersection": AverageMeter("Intersec", ":.4f", Summary.SUM),
"union": AverageMeter("Union", ":.4f", Summary.SUM),
"gIoU": AverageMeter("gIoU", ":.4f", Summary.SUM)}
training_model.eval()
for data_batch in tqdm.tqdm(validation_loader):
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
data_batch[key] = data_batch[key].bfloat16()
torch.cuda.empty_cache()
# Model inference without gradient tracking
with torch.no_grad():
results = training_model(**data_batch)
predictions = results["pred_masks"]
gt_masks = results["gt_masks"][0].int()
# Note: An error at this line may suggest that the dataset used for validation does not support
# segmentation tasks. Ensure that the dataset is appropriate for segmentation analysis.
predicted_masks = (predictions[0] > 0).int()
assert len(predictions) == 1
intersection, union, accuracy_iou = 0.0, 0.0, 0.0
for target, prediction in zip(gt_masks, predicted_masks):
intersect, union_, _ = intersectionAndUnionGPU(
prediction.contiguous().clone(), target.contiguous(), 2, ignore_index=255
)
intersection += intersect
union += union_
accuracy_iou += intersect / (union_ + 1e-5)
# handles no-object targets
accuracy_iou[union_ == 0] += 1.0
intersection, union = intersection.cpu().numpy(), union.cpu().numpy()
accuracy_iou = accuracy_iou.cpu().numpy() / gt_masks.shape[0]
trackers["intersection"].update(intersection)
trackers["union"].update(union)
trackers["gIoU"].update(accuracy_iou, n=gt_masks.shape[0])
for meter in trackers.values():
meter.all_reduce()
iou_per_class = trackers["intersection"].sum / (trackers["union"].sum + 1e-10)
class_iou = iou_per_class[1]
global_iou = trackers["gIoU"].avg[1]
if args.local_rank == 0:
tensorboard_writer.add_scalar("val/giou", global_iou, current_epoch)
tensorboard_writer.add_scalar("val/ciou", class_iou, current_epoch)
print("giou: {:.4f}, ciou: {:.4f}".format(global_iou, class_iou))
return global_iou, class_iou
else:
# Initializing performance trackers
trackers = {"loss": AverageMeter("Loss", ":.4f"), "ce_loss": AverageMeter("CeLoss", ":.4f"),
"mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"),
"mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"),
"mask_loss": AverageMeter("MaskLoss", ":.4f")}
# Prepare model for validation phase
# Hack to get the loss
training_model.train()
for data_batch in tqdm.tqdm(validation_loader):
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
if data_batch[key] is not None:
data_batch[key] = data_batch[key].bfloat16()
torch.cuda.empty_cache()
# Model inference without gradient tracking
with torch.no_grad():
predictions = training_model(**data_batch)
# Update performance metrics)
for key, tracker in trackers.items():
tracker.update(predictions[key].item(), data_batch["global_enc_images"].size(0))
# Synchronize metrics across processes
for tracker in trackers.values():
tracker.all_reduce()
# Calculate average validation loss
avg_val_loss = trackers["ce_loss"].avg
# Tensorboard logging for primary process
if args.local_rank == 0:
tensorboard_writer.add_scalar("val/loss", avg_val_loss, current_epoch)
return avg_val_loss
if __name__ == "__main__":
args = parse_args(sys.argv[1:])
main(args)