tuandunghcmut's picture
Add files using upload-large-folder tool
c85c9e5 verified
raw
history blame
18.9 kB
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_concat_dataset import ConcatVideoDataset
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
import pandas as pd
import imageio
import cv2
import zipfile
import os
import glob
from .utils.mlvu import *
FAIL_MSG = 'Failed to obtain answer via API.'
class MLVU(ConcatVideoDataset):
def __init__(self, dataset='MLVU'):
self.DATASET_SETS[dataset] = ['MLVU_MCQ', 'MLVU_OpenEnded']
self.type_data_dict = {
'M-Avg':['plotQA', 'needle', 'ego', 'count', 'anomaly_reco', 'topic_reasoning'],
'G-Avg':['sub_scene', 'summary']
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['MLVU']
def evaluate(self, eval_file, **judge_kwargs):
result = super().evaluate(eval_file=eval_file, **judge_kwargs)
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
for key in self.type_data_dict:
result.loc[key] = 0.0
for name, item in result.iterrows():
if name in self.type_data_dict[key]:
result.loc[key, 'success'] += item['success']
result.loc[key, 'overall'] += item['overall']
if key == 'G-Avg':
result.loc[key, 'acc'] = round(
result.loc[key, 'success'] / result.loc[key, 'overall'], 2
)
else:
result.loc[key, 'acc'] = round(
result.loc[key, 'success'] / result.loc[key, 'overall'] * 100, 1
)
result = result.reset_index().rename(columns={'index': 'task'})
dump(result, score_file)
return result
class MLVU_MCQ(VideoBaseDataset):
MD5 = 'bb5c37e7cf8d43fc9a25c23d2b4633f5'
BASE_SYS = 'Carefully watch this video and pay attention to every detail. '
SYS = BASE_SYS + 'Based on your observations, select the best option that accurately addresses the question.'
TYPE = 'Video-MCQ'
def __init__(self, dataset='MLVU_MCQ'):
self.type_data_list = {
'plotQA': ('1_plotQA.json', './MLVU/video/1_plotQA', 'MCQ'),
'needle': ('2_needle.json', './MLVU/video/2_needle', 'MCQ'),
'ego': ('3_ego.json', './MLVU/video/3_ego', 'MCQ'),
'count': ('4_count.json', './MLVU/video/4_count', 'MCQ'),
'order': ('5_order.json', './MLVU/video/5_order', 'MCQ'),
'anomaly_reco': ('6_anomaly_reco.json', './MLVU/video/6_anomaly_reco', 'MCQ'),
'topic_reasoning': ('7_topic_reasoning.json', './MLVU/video/7_topic_reasoning', 'MCQ'),
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['MLVU_MCQ']
def prepare_dataset(self, dataset_name='MLVU_MCQ', repo_id='MLVU/MVLU'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/MLVU"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'duration': data['duration'],
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'candidates': data['candidates'],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def save_video_frames(self, line, num_frames=8, fps=-1):
suffix = line['video'].split('.')[-1]
video = line['video'].replace(f'.{suffix}','')
vid_path = osp.join(self.data_root, line['prefix'], line['video'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(video, num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video, len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line, num_frames, fps):
frame_paths = self.save_video_frames(line, num_frames, fps)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps=-1):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line, num_frames, fps)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.setdefault('model', 'chatgpt-0125')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
input_item = data.loc[data['index'] == idx].to_dict(orient='records')[0]
for id, option_content in enumerate(eval(input_item['candidates'])):
input_item[chr(ord('A') + id)] = option_content
if option_content == input_item['answer']:
input_item['answer'] = chr(ord('A') + id)
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans_with_model(
pred, ans, model,
input_item,
'MLVU_MCQ'
))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class MLVU_OpenEnded(VideoBaseDataset):
MD5 = 'cee573a3627c6ac434ded704c60511ba'
BASE_SYS = 'Carefully watch this video and pay attention to every detail. '
SYS = BASE_SYS + 'Based on your observations, answer the given questions.'
TYPE = 'Video-VQA'
def __init__(self, dataset='MLVU_OpenEnded'):
self.type_data_list = {
'sub_scene': ('8_sub_scene.json', './MLVU/video/8_sub_scene', 'VQA'),
'summary': ('9_summary.json', './MLVU/video/9_summary', 'VQA')
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['MLVU_OpenEnded']
def prepare_dataset(self, dataset_name='MLVU_OpenEnded', repo_id='MLVU/MVLU'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/MLVU"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'duration': data['duration'],
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'scoring_points': data['scoring_points'] if 'scoring_points' in data else ''
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"{data['question']}"
answer = data['answer']
return question, answer
def save_video_frames(self, line, num_frames=8, fps=-1):
suffix = line['video'].split('.')[-1]
video = line['video'].replace(f'.{suffix}','')
vid_path = osp.join(self.data_root, line['prefix'], line['video'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(video, num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video, len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line, num_frames, fps):
frame_paths = self.save_video_frames(line, num_frames, fps)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps=-1):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line, num_frames, fps)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs['model'] if 'model' in judge_kwargs else judge_kwargs.setdefault('model', 'gpt-4-0125')
if model != 'gpt-4-0125':
print('MLVU Open Ended default using gpt-4-0125! So judge model is changed to gpt-4-0125')
judge_kwargs['model'] = 'gpt-4-0125'
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
model_dict = {
'sub_scene': build_judge(system_prompt=system_prompt_sub_scene, **judge_kwargs),
'summary': build_judge(system_prompt=system_prompt_summary, **judge_kwargs)
}
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model_dict[line['task_type']], line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
MLVU_OpenEnded_generate,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
data = MLVU_OpenEnded_extract(ans, data)
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating