|
import huggingface_hub |
|
from huggingface_hub import snapshot_download |
|
from ..smp import * |
|
from .video_concat_dataset import ConcatVideoDataset |
|
from .video_base import VideoBaseDataset |
|
from .utils import build_judge, DEBUG_MESSAGE |
|
from ..utils import track_progress_rich |
|
import torchvision.transforms as T |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from decord import VideoReader, cpu |
|
import pandas as pd |
|
import imageio |
|
import cv2 |
|
import zipfile |
|
import os |
|
import glob |
|
from .utils.mlvu import * |
|
|
|
FAIL_MSG = 'Failed to obtain answer via API.' |
|
|
|
|
|
class MLVU(ConcatVideoDataset): |
|
def __init__(self, dataset='MLVU'): |
|
self.DATASET_SETS[dataset] = ['MLVU_MCQ', 'MLVU_OpenEnded'] |
|
self.type_data_dict = { |
|
'M-Avg':['plotQA', 'needle', 'ego', 'count', 'anomaly_reco', 'topic_reasoning'], |
|
'G-Avg':['sub_scene', 'summary'] |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['MLVU'] |
|
|
|
def evaluate(self, eval_file, **judge_kwargs): |
|
result = super().evaluate(eval_file=eval_file, **judge_kwargs) |
|
suffix = eval_file.split('.')[-1] |
|
score_file = eval_file.replace(f'.{suffix}', '_acc.csv') |
|
for key in self.type_data_dict: |
|
result.loc[key] = 0.0 |
|
for name, item in result.iterrows(): |
|
if name in self.type_data_dict[key]: |
|
result.loc[key, 'success'] += item['success'] |
|
result.loc[key, 'overall'] += item['overall'] |
|
if key == 'G-Avg': |
|
result.loc[key, 'acc'] = round( |
|
result.loc[key, 'success'] / result.loc[key, 'overall'], 2 |
|
) |
|
else: |
|
result.loc[key, 'acc'] = round( |
|
result.loc[key, 'success'] / result.loc[key, 'overall'] * 100, 1 |
|
) |
|
result = result.reset_index().rename(columns={'index': 'task'}) |
|
dump(result, score_file) |
|
return result |
|
|
|
|
|
class MLVU_MCQ(VideoBaseDataset): |
|
|
|
MD5 = 'bb5c37e7cf8d43fc9a25c23d2b4633f5' |
|
BASE_SYS = 'Carefully watch this video and pay attention to every detail. ' |
|
SYS = BASE_SYS + 'Based on your observations, select the best option that accurately addresses the question.' |
|
TYPE = 'Video-MCQ' |
|
|
|
def __init__(self, dataset='MLVU_MCQ'): |
|
self.type_data_list = { |
|
'plotQA': ('1_plotQA.json', './MLVU/video/1_plotQA', 'MCQ'), |
|
'needle': ('2_needle.json', './MLVU/video/2_needle', 'MCQ'), |
|
'ego': ('3_ego.json', './MLVU/video/3_ego', 'MCQ'), |
|
'count': ('4_count.json', './MLVU/video/4_count', 'MCQ'), |
|
'order': ('5_order.json', './MLVU/video/5_order', 'MCQ'), |
|
'anomaly_reco': ('6_anomaly_reco.json', './MLVU/video/6_anomaly_reco', 'MCQ'), |
|
'topic_reasoning': ('7_topic_reasoning.json', './MLVU/video/7_topic_reasoning', 'MCQ'), |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['MLVU_MCQ'] |
|
|
|
def prepare_dataset(self, dataset_name='MLVU_MCQ', repo_id='MLVU/MVLU'): |
|
def check_integrity(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
|
|
if not os.path.exists(data_file): |
|
return False |
|
|
|
if md5(data_file) != self.MD5: |
|
return False |
|
|
|
data = load(data_file) |
|
for idx, item in data.iterrows(): |
|
if not osp.exists(osp.join(pth, item['prefix'], item['video'])): |
|
return False |
|
return True |
|
|
|
if modelscope_flag_set(): |
|
repo_id = "AI-ModelScope/MLVU" |
|
|
|
cache_path = get_cache_path(repo_id) |
|
if cache_path is not None and check_integrity(cache_path): |
|
dataset_path = cache_path |
|
else: |
|
def generate_tsv(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
if os.path.exists(data_file) and md5(data_file) == self.MD5: |
|
return |
|
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json') |
|
self.data_list = [] |
|
for k, v in self.type_data_list.items(): |
|
with open(os.path.join(json_data_dir, v[0]), 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
self.data_list.append({ |
|
'task_type': k, |
|
'prefix': v[1], |
|
'duration': data['duration'], |
|
'video': data['video'], |
|
'question': data['question'], |
|
'answer': data['answer'], |
|
'candidates': data['candidates'], |
|
}) |
|
|
|
data_df = pd.DataFrame(self.data_list) |
|
data_df = data_df.assign(index=range(len(data_df))) |
|
data_df.to_csv(data_file, sep='\t', index=False) |
|
|
|
if modelscope_flag_set(): |
|
from modelscope import dataset_snapshot_download |
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id) |
|
else: |
|
hf_token = os.environ.get('HUGGINGFACE_TOKEN') |
|
huggingface_hub.login(hf_token) |
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') |
|
|
|
generate_tsv(dataset_path) |
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv') |
|
return dict(root=dataset_path, data_file=data_file) |
|
|
|
def qa_template(self, data): |
|
question = f"Question: {data['question']}\n" |
|
question += 'Options:\n' |
|
answer = data['answer'] |
|
answer_idx = -1 |
|
for idx, c in enumerate(eval(data['candidates'])): |
|
question += f"({chr(ord('A') + idx)}) {c}\n" |
|
if c == answer: |
|
answer_idx = idx |
|
question = question.rstrip() |
|
answer = f"({chr(ord('A') + answer_idx)}) {answer}" |
|
return question, answer |
|
|
|
def save_video_frames(self, line, num_frames=8, fps=-1): |
|
suffix = line['video'].split('.')[-1] |
|
video = line['video'].replace(f'.{suffix}','') |
|
vid_path = osp.join(self.data_root, line['prefix'], line['video']) |
|
vid = decord.VideoReader(vid_path) |
|
video_info = { |
|
'fps': vid.get_avg_fps(), |
|
'n_frames': len(vid), |
|
} |
|
if num_frames > 0 and fps < 0: |
|
step_size = len(vid) / (num_frames + 1) |
|
indices = [int(i * step_size) for i in range(1, num_frames + 1)] |
|
frame_paths = self.frame_paths(video, num_frames) |
|
elif fps > 0: |
|
|
|
total_duration = video_info['n_frames'] / video_info['fps'] |
|
required_frames = int(total_duration * fps) |
|
step_size = video_info['fps'] / fps |
|
indices = [int(i * step_size) for i in range(required_frames)] |
|
frame_paths = self.frame_paths_fps(video, len(indices), fps) |
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths]) |
|
|
|
if not flag: |
|
images = [vid[i].asnumpy() for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
for im, pth in zip(images, frame_paths): |
|
if not osp.exists(pth): |
|
im.save(pth) |
|
|
|
return frame_paths |
|
|
|
def save_video_into_images(self, line, num_frames, fps): |
|
frame_paths = self.save_video_frames(line, num_frames, fps) |
|
return frame_paths |
|
|
|
def build_prompt(self, line, num_frames, video_llm, fps=-1): |
|
if isinstance(line, int): |
|
assert line < len(self) |
|
line = self.data.iloc[line] |
|
|
|
question, answer = self.qa_template(line) |
|
message = [dict(type='text', value=self.SYS, role='system')] |
|
message.append(dict(type='text', value=question)) |
|
video_path = os.path.join(self.data_root, line['prefix'], line['video']) |
|
if video_llm: |
|
message.append(dict(type='video', value=video_path)) |
|
else: |
|
img_frame_paths = self.save_video_into_images(line, num_frames, fps) |
|
for im in img_frame_paths: |
|
message.append(dict(type='image', value=im)) |
|
message.append(dict(type='text', value='\nOnly give the best option.')) |
|
return message |
|
|
|
@classmethod |
|
def evaluate(self, eval_file, **judge_kwargs): |
|
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file' |
|
|
|
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl') |
|
score_file = eval_file.replace('.xlsx', '_score.xlsx') |
|
|
|
if not osp.exists(score_file): |
|
model = judge_kwargs.setdefault('model', 'chatgpt-0125') |
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125'] |
|
|
|
if model == 'exact_matching': |
|
model = None |
|
elif gpt_key_set(): |
|
model = build_judge(**judge_kwargs) |
|
if not model.working(): |
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation') |
|
warnings.warn(DEBUG_MESSAGE) |
|
model = None |
|
else: |
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation') |
|
model = None |
|
res = {} if not osp.exists(tmp_file) else load(tmp_file) |
|
res = {k: v for k, v in res.items() if FAIL_MSG not in v} |
|
|
|
data = load(eval_file) |
|
data_un = data[~pd.isna(data['prediction'])] |
|
|
|
for idx in data['index']: |
|
ans = data.loc[data['index'] == idx, 'answer'].values[0] |
|
pred = data.loc[data['index'] == idx, 'prediction'].values[0] |
|
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0]) |
|
answer_idx = -1 |
|
for id, c in enumerate(options): |
|
if c == ans: |
|
answer_idx = id |
|
ans = f"({chr(ord('A') + answer_idx)}) {ans}" |
|
input_item = data.loc[data['index'] == idx].to_dict(orient='records')[0] |
|
for id, option_content in enumerate(eval(input_item['candidates'])): |
|
input_item[chr(ord('A') + id)] = option_content |
|
if option_content == input_item['answer']: |
|
input_item['answer'] = chr(ord('A') + id) |
|
|
|
if FAIL_MSG in pred: |
|
data.loc[idx, 'score'] = -1 |
|
else: |
|
data.loc[idx, 'score'] = int(check_ans_with_model( |
|
pred, ans, model, |
|
input_item, |
|
'MLVU_MCQ' |
|
)) |
|
|
|
rejected = [x for x in data['score'] if x == -1] |
|
|
|
print( |
|
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, ' |
|
f'failed to obtain the score for another {len(rejected)} questions. ' |
|
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.' |
|
) |
|
|
|
dump(data, score_file) |
|
|
|
rating = get_dimension_rating(score_file) |
|
return rating |
|
|
|
|
|
class MLVU_OpenEnded(VideoBaseDataset): |
|
|
|
MD5 = 'cee573a3627c6ac434ded704c60511ba' |
|
BASE_SYS = 'Carefully watch this video and pay attention to every detail. ' |
|
SYS = BASE_SYS + 'Based on your observations, answer the given questions.' |
|
TYPE = 'Video-VQA' |
|
|
|
def __init__(self, dataset='MLVU_OpenEnded'): |
|
self.type_data_list = { |
|
'sub_scene': ('8_sub_scene.json', './MLVU/video/8_sub_scene', 'VQA'), |
|
'summary': ('9_summary.json', './MLVU/video/9_summary', 'VQA') |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['MLVU_OpenEnded'] |
|
|
|
def prepare_dataset(self, dataset_name='MLVU_OpenEnded', repo_id='MLVU/MVLU'): |
|
def check_integrity(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
|
|
if not os.path.exists(data_file): |
|
return False |
|
|
|
if md5(data_file) != self.MD5: |
|
return False |
|
|
|
data = load(data_file) |
|
for idx, item in data.iterrows(): |
|
if not osp.exists(osp.join(pth, item['prefix'], item['video'])): |
|
return False |
|
return True |
|
|
|
if modelscope_flag_set(): |
|
repo_id = "AI-ModelScope/MLVU" |
|
|
|
cache_path = get_cache_path(repo_id) |
|
if cache_path is not None and check_integrity(cache_path): |
|
dataset_path = cache_path |
|
else: |
|
def generate_tsv(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
if os.path.exists(data_file) and md5(data_file) == self.MD5: |
|
return |
|
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json') |
|
self.data_list = [] |
|
for k, v in self.type_data_list.items(): |
|
with open(os.path.join(json_data_dir, v[0]), 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
self.data_list.append({ |
|
'task_type': k, |
|
'prefix': v[1], |
|
'duration': data['duration'], |
|
'video': data['video'], |
|
'question': data['question'], |
|
'answer': data['answer'], |
|
'scoring_points': data['scoring_points'] if 'scoring_points' in data else '' |
|
}) |
|
|
|
data_df = pd.DataFrame(self.data_list) |
|
data_df = data_df.assign(index=range(len(data_df))) |
|
data_df.to_csv(data_file, sep='\t', index=False) |
|
|
|
if modelscope_flag_set(): |
|
from modelscope import dataset_snapshot_download |
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id) |
|
else: |
|
hf_token = os.environ.get('HUGGINGFACE_TOKEN') |
|
huggingface_hub.login(hf_token) |
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') |
|
|
|
generate_tsv(dataset_path) |
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv') |
|
return dict(root=dataset_path, data_file=data_file) |
|
|
|
def qa_template(self, data): |
|
question = f"{data['question']}" |
|
answer = data['answer'] |
|
return question, answer |
|
|
|
def save_video_frames(self, line, num_frames=8, fps=-1): |
|
suffix = line['video'].split('.')[-1] |
|
video = line['video'].replace(f'.{suffix}','') |
|
vid_path = osp.join(self.data_root, line['prefix'], line['video']) |
|
vid = decord.VideoReader(vid_path) |
|
video_info = { |
|
'fps': vid.get_avg_fps(), |
|
'n_frames': len(vid), |
|
} |
|
if num_frames > 0 and fps < 0: |
|
step_size = len(vid) / (num_frames + 1) |
|
indices = [int(i * step_size) for i in range(1, num_frames + 1)] |
|
frame_paths = self.frame_paths(video, num_frames) |
|
elif fps > 0: |
|
|
|
total_duration = video_info['n_frames'] / video_info['fps'] |
|
required_frames = int(total_duration * fps) |
|
step_size = video_info['fps'] / fps |
|
indices = [int(i * step_size) for i in range(required_frames)] |
|
frame_paths = self.frame_paths_fps(video, len(indices), fps) |
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths]) |
|
|
|
if not flag: |
|
images = [vid[i].asnumpy() for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
for im, pth in zip(images, frame_paths): |
|
if not osp.exists(pth): |
|
im.save(pth) |
|
|
|
return frame_paths |
|
|
|
def save_video_into_images(self, line, num_frames, fps): |
|
frame_paths = self.save_video_frames(line, num_frames, fps) |
|
return frame_paths |
|
|
|
def build_prompt(self, line, num_frames, video_llm, fps=-1): |
|
if isinstance(line, int): |
|
assert line < len(self) |
|
line = self.data.iloc[line] |
|
|
|
question, answer = self.qa_template(line) |
|
message = [dict(type='text', value=self.SYS, role='system')] |
|
message.append(dict(type='text', value=question)) |
|
video_path = os.path.join(self.data_root, line['prefix'], line['video']) |
|
if video_llm: |
|
message.append(dict(type='video', value=video_path)) |
|
else: |
|
img_frame_paths = self.save_video_into_images(line, num_frames, fps) |
|
for im in img_frame_paths: |
|
message.append(dict(type='image', value=im)) |
|
return message |
|
|
|
@classmethod |
|
def evaluate(self, eval_file, **judge_kwargs): |
|
|
|
model = judge_kwargs['model'] if 'model' in judge_kwargs else judge_kwargs.setdefault('model', 'gpt-4-0125') |
|
if model != 'gpt-4-0125': |
|
print('MLVU Open Ended default using gpt-4-0125! So judge model is changed to gpt-4-0125') |
|
judge_kwargs['model'] = 'gpt-4-0125' |
|
|
|
suffix = eval_file.split('.')[-1] |
|
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx') |
|
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') |
|
nproc = judge_kwargs.pop('nproc', 4) |
|
|
|
if not osp.exists(score_file): |
|
data = load(eval_file) |
|
model_dict = { |
|
'sub_scene': build_judge(system_prompt=system_prompt_sub_scene, **judge_kwargs), |
|
'summary': build_judge(system_prompt=system_prompt_summary, **judge_kwargs) |
|
} |
|
lt = len(data) |
|
lines = [data.iloc[i] for i in range(lt)] |
|
tups = [(model_dict[line['task_type']], line) for line in lines] |
|
indices = [line['index'] for line in lines] |
|
|
|
ans = {} |
|
if osp.exists(tmp_file): |
|
ans = load(tmp_file) |
|
tups = [x for x, i in zip(tups, indices) if i not in ans] |
|
indices = [i for i in indices if i not in ans] |
|
|
|
if len(indices): |
|
_ = track_progress_rich( |
|
MLVU_OpenEnded_generate, |
|
tups, |
|
nproc=nproc, |
|
chunksize=nproc, |
|
keys=indices, |
|
save=tmp_file, |
|
) |
|
ans = load(tmp_file) |
|
data = MLVU_OpenEnded_extract(ans, data) |
|
dump(data, score_file) |
|
|
|
rating = get_dimension_rating(score_file) |
|
return rating |
|
|