tuandunghcmut's picture
Add files using upload-large-folder tool
c85c9e5 verified
raw
history blame
25.7 kB
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_concat_dataset import ConcatVideoDataset
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
from .utils.tempcompass import *
FAIL_MSG = 'Failed to obtain answer via API.'
class TempCompass(ConcatVideoDataset):
def __init__(self, dataset='TempCompass'):
self.DATASET_SETS[dataset] = ['TempCompass_MCQ', 'TempCompass_Captioning', 'TempCompass_YorN']
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['TempCompass']
def evaluate(self, eval_file, **judge_kwargs):
result = super().evaluate(eval_file=eval_file, **judge_kwargs)
suffix = eval_file.split('.')[-1]
result = result.reset_index().rename(columns={'index': 'dim.task_type'})
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
avg_dict = {}
for idx, item in result.iterrows():
dim, task_type = item['dim.task_type'].split('. ')
if dim not in avg_dict:
avg_dict[dim] = {'success': 0.0, 'overall': 0.0}
if task_type not in avg_dict:
avg_dict[task_type] = {'success': 0.0, 'overall': 0.0}
if 'overall' not in avg_dict:
avg_dict['overall'] = {'success': 0.0, 'overall': 0.0}
avg_dict[dim]['success'] += item['success']
avg_dict[dim]['overall'] += item['overall']
avg_dict[task_type]['success'] += item['success']
avg_dict[task_type]['overall'] += item['overall']
avg_dict['overall']['success'] += item['success']
avg_dict['overall']['overall'] += item['overall']
result.loc[idx, 'acc'] = round(item['success'] / item['overall'] * 100, 2)
for key, value in avg_dict.items():
# 使用 loc 方法添加新行
result.loc[len(result)] = {
'dim.task_type': key,
'success': value['success'],
'overall': value['overall'],
'acc': round(value['success'] / value['overall'] * 100, 2)
}
dump(result, score_file)
return result
class TempCompass_MCQ(VideoBaseDataset):
MD5 = '7efbb9e6d9dabacd22daf274852691dd'
TYPE = 'Video-MCQ'
def __init__(self, dataset='TempCompass_MCQ'):
self.type_data_list = {
'multi-choice': ('multi-choice.json', './videos', '.mp4'),
'caption_matching': ('caption_matching.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['TempCompass_MCQ']
def prepare_dataset(self, dataset_name='TempCompass_MCQ', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'].split('\n')[0],
'answer': data['answer'],
'dim': data['dim'],
'candidates': data['question'].split('\n')[1:],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question'] + '\n' + '\n'.join(eval(data['candidates']))
answer = data['answer']
return question, answer
def save_video_frames(self, line, num_frames=8, fps=-1):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(line['video'], num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line, num_frames, fps):
frame_paths = self.save_video_frames(line, num_frames, fps)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps=-1):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line, num_frames, fps)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nPlease directly give the best option:'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_mcq,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class TempCompass_Captioning(VideoBaseDataset):
MD5 = '35be9bf2581ea7767f02e9a8f37ae1ab'
TYPE = 'Video-VQA'
def __init__(self, dataset='TempCompass_Captioning'):
self.type_data_list = {
'captioning': ('captioning.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['TempCompass_Captioning']
def prepare_dataset(self, dataset_name='TempCompass_Captioning', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'],
'answer': data['answer'],
'dim': data['dim'],
'mc_question': data['mc_question'],
'mc_answer': data['mc_answer'],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question']
answer = data['answer']
return question, answer
def save_video_frames(self, line, num_frames=8, fps=-1):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(line['video'], num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line, num_frames, fps):
frame_paths = self.save_video_frames(line, num_frames, fps)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps=-1):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line, num_frames, fps)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_captioning,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class TempCompass_YorN(VideoBaseDataset):
MD5 = 'c72c046d7fa0e82c8cd7462f2e844ea8'
TYPE = 'Video-Y/N'
def __init__(self, dataset='TempCompass_YorN'):
self.type_data_list = {
'yes_no': ('yes_no.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset)
@classmethod
def supported_datasets(cls):
return ['TempCompass_YorN']
def prepare_dataset(self, dataset_name='TempCompass_YorN', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'].split('\n')[0],
'answer': data['answer'],
'dim': data['dim']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question']
answer = data['answer']
return question, answer
def save_video_frames(self, line, num_frames=8, fps=-1):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(line['video'], num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line, num_frames, fps):
frame_paths = self.save_video_frames(line, num_frames, fps)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps=-1):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line, num_frames, fps)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nPlease answer yes or no:'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_YorN,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating