|
import huggingface_hub |
|
from huggingface_hub import snapshot_download |
|
from ..smp import * |
|
from .video_concat_dataset import ConcatVideoDataset |
|
from .video_base import VideoBaseDataset |
|
from .utils import build_judge, DEBUG_MESSAGE |
|
from ..utils import track_progress_rich |
|
import torchvision.transforms as T |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from decord import VideoReader, cpu |
|
from .utils.tempcompass import * |
|
|
|
|
|
FAIL_MSG = 'Failed to obtain answer via API.' |
|
|
|
|
|
class TempCompass(ConcatVideoDataset): |
|
def __init__(self, dataset='TempCompass'): |
|
self.DATASET_SETS[dataset] = ['TempCompass_MCQ', 'TempCompass_Captioning', 'TempCompass_YorN'] |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['TempCompass'] |
|
|
|
def evaluate(self, eval_file, **judge_kwargs): |
|
result = super().evaluate(eval_file=eval_file, **judge_kwargs) |
|
suffix = eval_file.split('.')[-1] |
|
result = result.reset_index().rename(columns={'index': 'dim.task_type'}) |
|
score_file = eval_file.replace(f'.{suffix}', '_acc.csv') |
|
avg_dict = {} |
|
for idx, item in result.iterrows(): |
|
dim, task_type = item['dim.task_type'].split('. ') |
|
if dim not in avg_dict: |
|
avg_dict[dim] = {'success': 0.0, 'overall': 0.0} |
|
if task_type not in avg_dict: |
|
avg_dict[task_type] = {'success': 0.0, 'overall': 0.0} |
|
if 'overall' not in avg_dict: |
|
avg_dict['overall'] = {'success': 0.0, 'overall': 0.0} |
|
avg_dict[dim]['success'] += item['success'] |
|
avg_dict[dim]['overall'] += item['overall'] |
|
avg_dict[task_type]['success'] += item['success'] |
|
avg_dict[task_type]['overall'] += item['overall'] |
|
avg_dict['overall']['success'] += item['success'] |
|
avg_dict['overall']['overall'] += item['overall'] |
|
result.loc[idx, 'acc'] = round(item['success'] / item['overall'] * 100, 2) |
|
for key, value in avg_dict.items(): |
|
|
|
result.loc[len(result)] = { |
|
'dim.task_type': key, |
|
'success': value['success'], |
|
'overall': value['overall'], |
|
'acc': round(value['success'] / value['overall'] * 100, 2) |
|
} |
|
dump(result, score_file) |
|
return result |
|
|
|
|
|
class TempCompass_MCQ(VideoBaseDataset): |
|
|
|
MD5 = '7efbb9e6d9dabacd22daf274852691dd' |
|
TYPE = 'Video-MCQ' |
|
|
|
def __init__(self, dataset='TempCompass_MCQ'): |
|
self.type_data_list = { |
|
'multi-choice': ('multi-choice.json', './videos', '.mp4'), |
|
'caption_matching': ('caption_matching.json', './videos', '.mp4'), |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['TempCompass_MCQ'] |
|
|
|
def prepare_dataset(self, dataset_name='TempCompass_MCQ', repo_id='lmms-lab/TempCompass'): |
|
def check_integrity(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
|
|
if not osp.exists(data_file): |
|
return False |
|
|
|
if md5(data_file) != self.MD5: |
|
return False |
|
|
|
data = load(data_file) |
|
for idx, item in data.iterrows(): |
|
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])): |
|
return False |
|
return True |
|
|
|
cache_path = get_cache_path(repo_id) |
|
if cache_path is not None and check_integrity(cache_path): |
|
dataset_path = cache_path |
|
else: |
|
def read_parquet(pth): |
|
import pandas as pd |
|
for task_name in self.type_data_list.keys(): |
|
if not osp.exists(osp.join(pth, f'{task_name}.json')): |
|
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet')) |
|
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False) |
|
|
|
def unzip_videos(pth): |
|
import zipfile |
|
if not osp.exists(osp.join(pth, 'videos')): |
|
zip_file = osp.join(pth, 'tempcompass_videos.zip') |
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref: |
|
zip_ref.extractall(pth) |
|
|
|
def generate_tsv(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
if osp.exists(data_file) and md5(data_file) == self.MD5: |
|
return |
|
self.data_list = [] |
|
for k, v in self.type_data_list.items(): |
|
with open(osp.join(pth, v[0]), 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
self.data_list.append({ |
|
'task_type': k, |
|
'prefix': v[1], |
|
'suffix': v[2], |
|
'video': data['video_id'], |
|
'question': data['question'].split('\n')[0], |
|
'answer': data['answer'], |
|
'dim': data['dim'], |
|
'candidates': data['question'].split('\n')[1:], |
|
}) |
|
|
|
data_df = pd.DataFrame(self.data_list) |
|
data_df = data_df.assign(index=range(len(data_df))) |
|
data_df.to_csv(data_file, sep='\t', index=False) |
|
|
|
if modelscope_flag_set(): |
|
from modelscope import dataset_snapshot_download |
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id) |
|
else: |
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') |
|
read_parquet(dataset_path) |
|
unzip_videos(dataset_path) |
|
generate_tsv(dataset_path) |
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv') |
|
return dict(root=dataset_path, data_file=data_file) |
|
|
|
def qa_template(self, data): |
|
question = data['question'] + '\n' + '\n'.join(eval(data['candidates'])) |
|
answer = data['answer'] |
|
return question, answer |
|
|
|
def save_video_frames(self, line, num_frames=8, fps=-1): |
|
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
vid = decord.VideoReader(vid_path) |
|
video_info = { |
|
'fps': vid.get_avg_fps(), |
|
'n_frames': len(vid), |
|
} |
|
if num_frames > 0 and fps < 0: |
|
step_size = len(vid) / (num_frames + 1) |
|
indices = [int(i * step_size) for i in range(1, num_frames + 1)] |
|
frame_paths = self.frame_paths(line['video'], num_frames) |
|
elif fps > 0: |
|
|
|
total_duration = video_info['n_frames'] / video_info['fps'] |
|
required_frames = int(total_duration * fps) |
|
step_size = video_info['fps'] / fps |
|
indices = [int(i * step_size) for i in range(required_frames)] |
|
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps) |
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths]) |
|
|
|
if not flag: |
|
images = [vid[i].asnumpy() for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
for im, pth in zip(images, frame_paths): |
|
if not osp.exists(pth): |
|
im.save(pth) |
|
|
|
return frame_paths |
|
|
|
def save_video_into_images(self, line, num_frames, fps): |
|
frame_paths = self.save_video_frames(line, num_frames, fps) |
|
return frame_paths |
|
|
|
def build_prompt(self, line, num_frames, video_llm, fps=-1): |
|
if isinstance(line, int): |
|
assert line < len(self) |
|
line = self.data.iloc[line] |
|
|
|
question, answer = self.qa_template(line) |
|
message = [] |
|
message.append(dict(type='text', value=question)) |
|
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
if video_llm: |
|
message.append(dict(type='video', value=video_path)) |
|
else: |
|
img_frame_paths = self.save_video_into_images(line, num_frames, fps) |
|
for im in img_frame_paths: |
|
message.append(dict(type='image', value=im)) |
|
message.append(dict(type='text', value='\nPlease directly give the best option:')) |
|
return message |
|
|
|
@classmethod |
|
def evaluate(self, eval_file, **judge_kwargs): |
|
model = judge_kwargs.get('model', 'exact_matching') |
|
assert model in ['chatgpt-1106', 'exact_matching'] |
|
judge_kwargs.update({ |
|
"max_tokens": 128, |
|
"temperature": 1.0, |
|
"top_p": 1, |
|
"presence_penalty": 1, |
|
}) |
|
|
|
suffix = eval_file.split('.')[-1] |
|
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx') |
|
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') |
|
nproc = judge_kwargs.pop('nproc', 4) |
|
|
|
if not osp.exists(score_file): |
|
data = load(eval_file) |
|
if model != 'exact_matching': |
|
model = build_judge(system_prompt=sys_prompt, **judge_kwargs) |
|
else: |
|
model = None |
|
|
|
lt = len(data) |
|
lines = [data.iloc[i] for i in range(lt)] |
|
tups = [(model, line) for line in lines] |
|
indices = [line['index'] for line in lines] |
|
|
|
ans = {} |
|
if osp.exists(tmp_file): |
|
ans = load(tmp_file) |
|
tups = [x for x, i in zip(tups, indices) if i not in ans] |
|
indices = [i for i in indices if i not in ans] |
|
|
|
if len(indices): |
|
_ = track_progress_rich( |
|
evaluate_tempcompass_mcq, |
|
tups, |
|
nproc=nproc, |
|
chunksize=nproc, |
|
keys=indices, |
|
save=tmp_file, |
|
) |
|
ans = load(tmp_file) |
|
for idx, item in data.iterrows(): |
|
data.loc[idx, 'score'] = ans[idx]['rating'] |
|
dump(data, score_file) |
|
|
|
rating = get_dimension_rating(score_file) |
|
return rating |
|
|
|
|
|
class TempCompass_Captioning(VideoBaseDataset): |
|
|
|
MD5 = '35be9bf2581ea7767f02e9a8f37ae1ab' |
|
TYPE = 'Video-VQA' |
|
|
|
def __init__(self, dataset='TempCompass_Captioning'): |
|
self.type_data_list = { |
|
'captioning': ('captioning.json', './videos', '.mp4'), |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['TempCompass_Captioning'] |
|
|
|
def prepare_dataset(self, dataset_name='TempCompass_Captioning', repo_id='lmms-lab/TempCompass'): |
|
def check_integrity(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
|
|
if not osp.exists(data_file): |
|
return False |
|
|
|
if md5(data_file) != self.MD5: |
|
return False |
|
|
|
data = load(data_file) |
|
for idx, item in data.iterrows(): |
|
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])): |
|
return False |
|
return True |
|
|
|
cache_path = get_cache_path(repo_id) |
|
if cache_path is not None and check_integrity(cache_path): |
|
dataset_path = cache_path |
|
else: |
|
def read_parquet(pth): |
|
import pandas as pd |
|
for task_name in self.type_data_list.keys(): |
|
if not osp.exists(osp.join(pth, f'{task_name}.json')): |
|
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet')) |
|
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False) |
|
|
|
def unzip_videos(pth): |
|
import zipfile |
|
if not osp.exists(osp.join(pth, 'videos')): |
|
zip_file = osp.join(pth, 'tempcompass_videos.zip') |
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref: |
|
zip_ref.extractall(pth) |
|
|
|
def generate_tsv(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
if osp.exists(data_file) and md5(data_file) == self.MD5: |
|
return |
|
self.data_list = [] |
|
for k, v in self.type_data_list.items(): |
|
with open(osp.join(pth, v[0]), 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
self.data_list.append({ |
|
'task_type': k, |
|
'prefix': v[1], |
|
'suffix': v[2], |
|
'video': data['video_id'], |
|
'question': data['question'], |
|
'answer': data['answer'], |
|
'dim': data['dim'], |
|
'mc_question': data['mc_question'], |
|
'mc_answer': data['mc_answer'], |
|
}) |
|
|
|
data_df = pd.DataFrame(self.data_list) |
|
data_df = data_df.assign(index=range(len(data_df))) |
|
data_df.to_csv(data_file, sep='\t', index=False) |
|
|
|
if modelscope_flag_set(): |
|
from modelscope import dataset_snapshot_download |
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id) |
|
else: |
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') |
|
read_parquet(dataset_path) |
|
unzip_videos(dataset_path) |
|
generate_tsv(dataset_path) |
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv') |
|
return dict(root=dataset_path, data_file=data_file) |
|
|
|
def qa_template(self, data): |
|
question = data['question'] |
|
answer = data['answer'] |
|
return question, answer |
|
|
|
def save_video_frames(self, line, num_frames=8, fps=-1): |
|
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
vid = decord.VideoReader(vid_path) |
|
video_info = { |
|
'fps': vid.get_avg_fps(), |
|
'n_frames': len(vid), |
|
} |
|
if num_frames > 0 and fps < 0: |
|
step_size = len(vid) / (num_frames + 1) |
|
indices = [int(i * step_size) for i in range(1, num_frames + 1)] |
|
frame_paths = self.frame_paths(line['video'], num_frames) |
|
elif fps > 0: |
|
|
|
total_duration = video_info['n_frames'] / video_info['fps'] |
|
required_frames = int(total_duration * fps) |
|
step_size = video_info['fps'] / fps |
|
indices = [int(i * step_size) for i in range(required_frames)] |
|
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps) |
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths]) |
|
|
|
if not flag: |
|
images = [vid[i].asnumpy() for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
for im, pth in zip(images, frame_paths): |
|
if not osp.exists(pth): |
|
im.save(pth) |
|
|
|
return frame_paths |
|
|
|
def save_video_into_images(self, line, num_frames, fps): |
|
frame_paths = self.save_video_frames(line, num_frames, fps) |
|
return frame_paths |
|
|
|
def build_prompt(self, line, num_frames, video_llm, fps=-1): |
|
if isinstance(line, int): |
|
assert line < len(self) |
|
line = self.data.iloc[line] |
|
|
|
question, answer = self.qa_template(line) |
|
message = [] |
|
message.append(dict(type='text', value=question)) |
|
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
if video_llm: |
|
message.append(dict(type='video', value=video_path)) |
|
else: |
|
img_frame_paths = self.save_video_into_images(line, num_frames, fps) |
|
for im in img_frame_paths: |
|
message.append(dict(type='image', value=im)) |
|
return message |
|
|
|
@classmethod |
|
def evaluate(self, eval_file, **judge_kwargs): |
|
model = judge_kwargs.get('model', 'exact_matching') |
|
assert model in ['chatgpt-1106', 'exact_matching'] |
|
judge_kwargs.update({ |
|
"max_tokens": 128, |
|
"temperature": 1.0, |
|
"top_p": 1, |
|
"presence_penalty": 1, |
|
}) |
|
|
|
suffix = eval_file.split('.')[-1] |
|
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx') |
|
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') |
|
nproc = judge_kwargs.pop('nproc', 4) |
|
|
|
if not osp.exists(score_file): |
|
data = load(eval_file) |
|
if model != 'exact_matching': |
|
model = build_judge(system_prompt=sys_prompt, **judge_kwargs) |
|
else: |
|
model = None |
|
|
|
lt = len(data) |
|
lines = [data.iloc[i] for i in range(lt)] |
|
tups = [(model, line) for line in lines] |
|
indices = [line['index'] for line in lines] |
|
|
|
ans = {} |
|
if osp.exists(tmp_file): |
|
ans = load(tmp_file) |
|
tups = [x for x, i in zip(tups, indices) if i not in ans] |
|
indices = [i for i in indices if i not in ans] |
|
|
|
if len(indices): |
|
_ = track_progress_rich( |
|
evaluate_tempcompass_captioning, |
|
tups, |
|
nproc=nproc, |
|
chunksize=nproc, |
|
keys=indices, |
|
save=tmp_file, |
|
) |
|
ans = load(tmp_file) |
|
for idx, item in data.iterrows(): |
|
data.loc[idx, 'score'] = ans[idx]['rating'] |
|
dump(data, score_file) |
|
|
|
rating = get_dimension_rating(score_file) |
|
return rating |
|
|
|
|
|
class TempCompass_YorN(VideoBaseDataset): |
|
|
|
MD5 = 'c72c046d7fa0e82c8cd7462f2e844ea8' |
|
TYPE = 'Video-Y/N' |
|
|
|
def __init__(self, dataset='TempCompass_YorN'): |
|
self.type_data_list = { |
|
'yes_no': ('yes_no.json', './videos', '.mp4'), |
|
} |
|
super().__init__(dataset=dataset) |
|
|
|
@classmethod |
|
def supported_datasets(cls): |
|
return ['TempCompass_YorN'] |
|
|
|
def prepare_dataset(self, dataset_name='TempCompass_YorN', repo_id='lmms-lab/TempCompass'): |
|
def check_integrity(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
|
|
if not osp.exists(data_file): |
|
return False |
|
|
|
if md5(data_file) != self.MD5: |
|
return False |
|
|
|
data = load(data_file) |
|
for idx, item in data.iterrows(): |
|
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])): |
|
return False |
|
return True |
|
|
|
cache_path = get_cache_path(repo_id) |
|
if cache_path is not None and check_integrity(cache_path): |
|
dataset_path = cache_path |
|
else: |
|
def read_parquet(pth): |
|
import pandas as pd |
|
for task_name in self.type_data_list.keys(): |
|
if not osp.exists(osp.join(pth, f'{task_name}.json')): |
|
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet')) |
|
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False) |
|
|
|
def unzip_videos(pth): |
|
import zipfile |
|
if not osp.exists(osp.join(pth, 'videos')): |
|
zip_file = osp.join(pth, 'tempcompass_videos.zip') |
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref: |
|
zip_ref.extractall(pth) |
|
|
|
def generate_tsv(pth): |
|
data_file = osp.join(pth, f'{dataset_name}.tsv') |
|
if osp.exists(data_file) and md5(data_file) == self.MD5: |
|
return |
|
self.data_list = [] |
|
for k, v in self.type_data_list.items(): |
|
with open(osp.join(pth, v[0]), 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
self.data_list.append({ |
|
'task_type': k, |
|
'prefix': v[1], |
|
'suffix': v[2], |
|
'video': data['video_id'], |
|
'question': data['question'].split('\n')[0], |
|
'answer': data['answer'], |
|
'dim': data['dim'] |
|
}) |
|
|
|
data_df = pd.DataFrame(self.data_list) |
|
data_df = data_df.assign(index=range(len(data_df))) |
|
data_df.to_csv(data_file, sep='\t', index=False) |
|
|
|
if modelscope_flag_set(): |
|
from modelscope import dataset_snapshot_download |
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id) |
|
else: |
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') |
|
read_parquet(dataset_path) |
|
unzip_videos(dataset_path) |
|
generate_tsv(dataset_path) |
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv') |
|
return dict(root=dataset_path, data_file=data_file) |
|
|
|
def qa_template(self, data): |
|
question = data['question'] |
|
answer = data['answer'] |
|
return question, answer |
|
|
|
def save_video_frames(self, line, num_frames=8, fps=-1): |
|
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
vid = decord.VideoReader(vid_path) |
|
video_info = { |
|
'fps': vid.get_avg_fps(), |
|
'n_frames': len(vid), |
|
} |
|
if num_frames > 0 and fps < 0: |
|
step_size = len(vid) / (num_frames + 1) |
|
indices = [int(i * step_size) for i in range(1, num_frames + 1)] |
|
frame_paths = self.frame_paths(line['video'], num_frames) |
|
elif fps > 0: |
|
|
|
total_duration = video_info['n_frames'] / video_info['fps'] |
|
required_frames = int(total_duration * fps) |
|
step_size = video_info['fps'] / fps |
|
indices = [int(i * step_size) for i in range(required_frames)] |
|
frame_paths = self.frame_paths_fps(line['video'], len(indices), fps) |
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths]) |
|
|
|
if not flag: |
|
images = [vid[i].asnumpy() for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
for im, pth in zip(images, frame_paths): |
|
if not osp.exists(pth): |
|
im.save(pth) |
|
|
|
return frame_paths |
|
|
|
def save_video_into_images(self, line, num_frames, fps): |
|
frame_paths = self.save_video_frames(line, num_frames, fps) |
|
return frame_paths |
|
|
|
def build_prompt(self, line, num_frames, video_llm, fps=-1): |
|
if isinstance(line, int): |
|
assert line < len(self) |
|
line = self.data.iloc[line] |
|
|
|
question, answer = self.qa_template(line) |
|
message = [] |
|
message.append(dict(type='text', value=question)) |
|
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix']) |
|
if video_llm: |
|
message.append(dict(type='video', value=video_path)) |
|
else: |
|
img_frame_paths = self.save_video_into_images(line, num_frames, fps) |
|
for im in img_frame_paths: |
|
message.append(dict(type='image', value=im)) |
|
message.append(dict(type='text', value='\nPlease answer yes or no:')) |
|
return message |
|
|
|
@classmethod |
|
def evaluate(self, eval_file, **judge_kwargs): |
|
model = judge_kwargs.get('model', 'exact_matching') |
|
assert model in ['chatgpt-1106', 'exact_matching'] |
|
judge_kwargs.update({ |
|
"max_tokens": 128, |
|
"temperature": 1.0, |
|
"top_p": 1, |
|
"presence_penalty": 1, |
|
}) |
|
|
|
suffix = eval_file.split('.')[-1] |
|
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx') |
|
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') |
|
nproc = judge_kwargs.pop('nproc', 4) |
|
|
|
if not osp.exists(score_file): |
|
data = load(eval_file) |
|
if model != 'exact_matching': |
|
model = build_judge(system_prompt=sys_prompt, **judge_kwargs) |
|
else: |
|
model = None |
|
|
|
lt = len(data) |
|
lines = [data.iloc[i] for i in range(lt)] |
|
tups = [(model, line) for line in lines] |
|
indices = [line['index'] for line in lines] |
|
|
|
ans = {} |
|
if osp.exists(tmp_file): |
|
ans = load(tmp_file) |
|
tups = [x for x, i in zip(tups, indices) if i not in ans] |
|
indices = [i for i in indices if i not in ans] |
|
|
|
if len(indices): |
|
_ = track_progress_rich( |
|
evaluate_tempcompass_YorN, |
|
tups, |
|
nproc=nproc, |
|
chunksize=nproc, |
|
keys=indices, |
|
save=tmp_file, |
|
) |
|
ans = load(tmp_file) |
|
for idx, item in data.iterrows(): |
|
data.loc[idx, 'score'] = ans[idx]['rating'] |
|
dump(data, score_file) |
|
|
|
rating = get_dimension_rating(score_file) |
|
return rating |
|
|