tuandunghcmut's picture
Add files using upload-large-folder tool
c85c9e5 verified
raw
history blame
12.6 kB
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
FAIL_MSG = 'Failed to obtain answer via API.'
def unwrap_hf_pkl(pth, suffix='.mp4'):
base_dir = os.path.join(pth, 'video_pkl/')
target_dir = os.path.join(pth, 'video/')
pickle_files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]
pickle_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for pickle_file in pickle_files:
with open(pickle_file, 'rb') as file:
video_data = pickle.load(file)
# For each video file in the pickle file, write its contents to a new mp4 file
for video_name, video_content in video_data.items():
output_path = os.path.join(target_dir, f'{video_name}{suffix}')
with open(output_path, 'wb') as output_file:
output_file.write(video_content)
print('The video file has been restored and stored from the pickle file.')
else:
print('The video file already exists.')
class VideoMME(VideoBaseDataset):
MD5 = '85bdd91f9b29a99354c23b97ab7c113c'
SYS = ''
FRAMES_TMPL_NOSUB = """
These are the frames of a video. \
Select the best answer to the following multiple-choice question based on the video. \
Respond with only the letter (A, B, C, or D) of the correct option.
"""
FRAMES_TMPL_SUB = """
These are the frames of a video. \
This video's subtitles are listed below:
{}
Select the best answer to the following multiple-choice question based on the video. \
Respond with only the letter (A, B, C, or D) of the correct option.
"""
TYPE = 'Video-MCQ'
def __init__(self, dataset='Video-MME', use_subtitle=False):
super().__init__(dataset=dataset)
self.use_subtitle = use_subtitle
self.dataset_name = dataset
@classmethod
def supported_datasets(cls):
return ['Video-MME']
def prepare_dataset(self, dataset_name='Video-MME', repo_id='lmms-lab/Video-MME'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def unzip_hf_zip(pth):
import zipfile
base_dir = pth
target_dir = os.path.join(pth, 'video/')
zip_files = [
os.path.join(base_dir, file) for file in os.listdir(base_dir)
if file.endswith('.zip') and file.startswith('video')
]
zip_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for zip_file in zip_files:
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
for member in zip_ref.namelist():
# Check if the member is a file (not a directory)
if not member.endswith('/'):
# Extract the file to the specified directory
source = zip_ref.open(member)
target = open(os.path.join(target_dir, os.path.basename(member)), 'wb')
with source, target:
target.write(source.read())
print('The video file has been restored and stored from the zip file.')
else:
print('The video file already exists.')
subtitle_zip_file = os.path.join(base_dir, 'subtitle.zip')
subtitle_target_dir = os.path.join(base_dir, 'subtitle')
if not os.path.exists(subtitle_target_dir):
os.makedirs(subtitle_target_dir, exist_ok=True)
with zipfile.ZipFile(subtitle_zip_file, 'r') as zip_ref:
for member in zip_ref.namelist():
# Check if the member is a file (not a directory)
if not member.endswith('/'):
# Extract the file to the specified directory
source = zip_ref.open(member)
target = open(os.path.join(subtitle_target_dir, os.path.basename(member)), 'wb')
with source, target:
target.write(source.read())
print('The subtitle file has been restored and stored from the zip file.')
else:
print('The subtitle file already exists.')
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
data_file = pd.read_parquet(os.path.join(pth, 'videomme/test-00000-of-00001.parquet'))
data_file = data_file.assign(index=range(len(data_file)))
data_file['video'] = data_file['videoID']
data_file['video_path'] = data_file['videoID'].apply(lambda x: f'./video/{x}.mp4')
data_file['subtitle_path'] = data_file['videoID'].apply(lambda x: f'./subtitle/{x}.srt')
data_file['candidates'] = data_file['options'].apply(lambda x: x.tolist())
data_file = data_file[['index', 'video', 'video_path', 'duration', 'domain', 'candidates',
'sub_category', 'task_type', 'subtitle_path', 'question', 'answer']]
data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
unzip_hf_zip(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=dataset_path)
def save_video_frames(self, video, num_frames=8, fps=-1, video_llm=False):
vid_path = osp.join(self.data_root, 'video', video + '.mp4')
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if num_frames > 0 and fps < 0:
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
frame_paths = self.frame_paths(video, num_frames)
elif fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * fps)
step_size = video_info['fps'] / fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video, len(indices), fps)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth) and not video_llm:
im.save(pth)
return frame_paths, indices, video_info
def save_video_into_images(self, line, num_frames=8):
frame_paths, indices, video_info = self.save_video_frames(line['video'], num_frames)
return frame_paths
def build_prompt(self, line, num_frames, video_llm, fps):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
frames, indices, video_info = self.save_video_frames(line['video'], num_frames, fps, video_llm)
if self.use_subtitle and os.path.exists(osp.join(self.data_root, line['subtitle_path'])):
import pysubs2
subs = pysubs2.load(osp.join(self.data_root, line['subtitle_path']), encoding='utf-8')
subtitles = []
for seleced_frame_id in indices:
sub_text = ''
cur_time = pysubs2.make_time(fps=video_info['fps'], frames=seleced_frame_id)
for sub in subs:
if sub.start < cur_time and sub.end > cur_time:
sub_text = sub.text.replace('\\N', ' ')
break
if sub_text.strip():
subtitles.append(sub_text)
subtitles = '\n'.join(subtitles)
else:
subtitles = ''
message = [dict(type='text', value=self.SYS)]
if video_llm:
message.append(dict(type='video', value=osp.join(self.data_root, 'video', line['video'] + '.mp4')))
else:
for im in frames:
message.append(dict(type='image', value=im))
text_prompt = self.FRAMES_TMPL_NOSUB if not self.use_subtitle else self.FRAMES_TMPL_SUB.format(subtitles)
message.append(dict(type='text', value=text_prompt))
line['question'] += '\n' + '\n'.join(eval(line['candidates']))
prompt = 'Question: {}\nAnswer: '.format(line['question'])
message.append(dict(type='text', value=prompt))
return message
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.videomme import get_dimension_rating, extract_characters_regex, extract_option
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = str(data.loc[data['index'] == idx, 'prediction'].values[0])
if extract_characters_regex(pred) == '':
extract_pred = extract_option(
model,
data.loc[data['index'] == idx].to_dict(orient='records')[0],
'Video-MME'
)
data.loc[idx, 'score'] = int(extract_pred == ans)
else:
data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating