tuandunghcmut's picture
Add files using upload-large-folder tool
dae9dfe verified
raw
history blame
13.4 kB
import math
import pandas as pd
import random
import re
import string
import torch
import torch.distributed as dist
import torchvision.transforms as T
import transformers
import warnings
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor
from ..base import BaseModel
from ...dataset import DATASET_TYPE, DATASET_MODALITY
from ...smp import *
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6, upscale=False):
image = Image.open(image_file).convert('RGB')
if upscale:
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_local_rank_and_local_world_size():
if not dist.is_available():
return 0, 1
if not dist.is_initialized():
return 0, 1
if 'SLURM_LOCALID' in os.environ:
local_rank = int(os.environ['SLURM_LOCALID'])
local_world_size = int(os.environ['SLURM_NTASKS_PER_NODE'])
return local_rank, local_world_size
if 'LOCAL_RANK' in os.environ and 'LOCAL_WORLD_SIZE' in os.environ:
return int(os.environ['LOCAL_RANK']), int(os.environ['LOCAL_WORLD_SIZE'])
raise NotImplementedError(
"Fail to get local_rank and local_world_size! "
"Please ensure that you set the environment variable "
"`LOCAL_RANK` and `LOCAL_WORLD_SIZE`"
)
def split_model(model_path):
num_gpus_per_node = 8
rank, world_size = get_rank_and_world_size()
try:
local_rank, local_world_size = get_local_rank_and_local_world_size()
except:
local_rank = rank
if 'GPUS_PER_PROCESS' in os.environ:
gpus_per_process = int(os.environ['GPUS_PER_PROCESS'])
else:
gpus_per_process = 8 # default to use 8 GPUs for one model
start_gpu = local_rank * gpus_per_process
end_gpu = start_gpu + gpus_per_process
assert end_gpu <= num_gpus_per_node, f"Process {local_rank} tries to access GPU {end_gpu}, " \
f"but only {num_gpus_per_node} GPUs are available per node."
visible_devices = list(range(start_gpu, end_gpu))
device_map = {}
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_gpus_for_vit = 0.5
num_layers = config.llm_config.num_hidden_layers
num_layers_per_gpu = math.ceil(num_layers / (len(visible_devices) - num_gpus_for_vit))
num_layers_per_gpu = [num_layers_per_gpu] * len(visible_devices)
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = visible_devices[i]
layer_cnt += 1
device_map['vision_model'] = visible_devices[0]
device_map['mlp1'] = visible_devices[0]
device_map['language_model.model.tok_embeddings'] = visible_devices[0]
device_map['language_model.model.embed_tokens'] = visible_devices[0]
device_map['language_model.output'] = visible_devices[0]
device_map['language_model.model.norm'] = visible_devices[0]
device_map['language_model.lm_head'] = visible_devices[0]
device_map[f'language_model.model.layers.{num_layers - 1}'] = visible_devices[0]
return device_map, visible_devices
def split_model_old(model_name):
import math
device_map = {}
num_gpus = torch.cuda.device_count()
rank, world_size = get_rank_and_world_size()
num_gpus = num_gpus // world_size
num_layers_map = {
'InternVL2-8B': 32,
'InternVL2-26B': 48,
'InternVL2-40B': 60,
'InternVL2-Llama3-76B': 80
}
if model_name not in num_layers_map:
return 'cuda'
num_layers = num_layers_map[model_name]
# Since the first GPU will be used for ViT, treat it as 0.5 GPU.
num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
layer_cnt += 1
device_map['vision_model'] = rank
device_map['mlp1'] = rank
device_map['language_model.model.tok_embeddings'] = rank
device_map['language_model.model.embed_tokens'] = rank
device_map['language_model.output'] = rank
device_map['language_model.model.norm'] = rank
device_map['language_model.lm_head'] = rank
device_map['language_model.model.rotary_emb'] = rank
device_map[f'language_model.model.layers.{num_layers - 1}'] = rank
return device_map
def build_mcq_cot_prompt(line, prompt):
cot_prompt = (
"Answer the preceding multiple choice question. The last line of your response should follow "
"this format: 'Answer: \\boxed{$LETTER}' (without quotes), where LETTER is one of the options. "
"If you are uncertain or the problem is too complex, make a reasoned guess based on the "
"information provided. Avoid repeating steps indefinitely—provide your best guess even if "
"unsure. Think step by step logically, considering all relevant information before answering."
)
prompt = prompt.replace("Answer with the option's letter from the given choices directly.", '').strip()
prompt = prompt + '\n' + cot_prompt
return prompt
def build_qa_cot_prompt(line, prompt):
cot_prompt = (
"Answer the preceding question. The last line of your response should follow this format: "
"'Answer: \\boxed{$FINAL_ANSWER}' (without quotes), where 'FINAL_ANSWER' is your conclusion "
"based on the reasoning provided. If you are uncertain or the problem is too complex, make "
"a reasoned guess based on the information provided. Avoid repeating steps indefinitely—"
"provide your best guess even if unsure. Think step by step logically, considering all "
"relevant information before answering."
)
prompt = prompt + '\n' + cot_prompt
return prompt
def build_multi_choice_prompt(line, dataset=None):
question = line['question']
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
question = hint + '\n' + question
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
for key, item in options.items():
question += f'\n{key}. {item}'
prompt = question
if len(options):
prompt += '\n请直接回答选项字母。' if cn_string(
prompt) else "\nAnswer with the option's letter from the given choices directly."
else:
prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.'
return prompt
def build_video_prompt(prompt, dataset=None, max_frames=64):
for start in range(0, max_frames, 8):
images_to_remove = ''.join([f'<Image-{i}>' for i in range(start + 1, start + 9)])
prompt = prompt.replace(images_to_remove, '')
for i in range(max_frames):
prompt = prompt.replace(f'Image-{i + 1}', f'Frame-{i + 1}')
if listinstr(['MMBench-Video'], dataset):
prompt = prompt.replace('\nAnswer:', '')
elif listinstr(['Video-MME'], dataset):
prompt = prompt.replace('\nAnswer:', '')
prompt += "\nAnswer with the option's letter from the given choices directly."
elif listinstr(['MVBench'], dataset):
prompt = prompt.replace('Best option:(', '')
return prompt
def reorganize_prompt(message, image_num, dataset=None):
if dataset is not None and listinstr(['MUIRBench'], dataset):
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
images_to_remove = ' '.join(['<image>'] * image_num)
prompt = prompt.replace(images_to_remove, '')
for i in range(image_num):
prompt = prompt.replace('<image>', f'<Image-{i + 1}>', 1)
prompt = ''.join([f'Image-{i + 1}: <image>\n' for i in range(image_num)]) + prompt
elif image_num == 1:
prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text'])
else:
prompt, image_idx = '', 1
for x in message:
if x['type'] == 'text':
prompt += x['value']
elif x['type'] == 'image':
prompt += f'<Image-{image_idx}>'
image_idx += 1
prompt = ''.join([f'Image-{i + 1}: <image>\n' for i in range(image_num)]) + prompt
images_to_remove = ''.join([f'<Image-{i + 1}>' for i in range(image_num)])
prompt = prompt.replace(images_to_remove, '')
return prompt
mpo_prompt_with_final_answer = (
"Your task is to answer the question below. "
"Give step by step reasoning before you answer, and when you're ready to answer, "
"please use the format \"Final answer: ..\""
"\n\n"
"Question:"
"\n\n"
"{question}"
)
mpo_prompt_without_final_answer = (
"Your task is to answer the question below. "
"Give step by step reasoning. "
"\n\n"
"Question:"
"\n\n"
"{question}"
)
def mpo_post_processing(response, dataset):
def extract_answer(text):
match = re.search(r'(Final answer:|Answer:)\s*(.*)', text, re.IGNORECASE)
if match:
return match.group(2).strip()
return text
if dataset is not None and (DATASET_TYPE(dataset) in ['Y/N', 'MCQ'] or listinstr(['CRPE'], dataset)):
response = extract_answer(response).strip()
return response
def build_mpo_prompt(message, line, dataset):
if not listinstr(['LLaVABench'], dataset):
if listinstr(['MMVet'], dataset):
cot_prompt = mpo_prompt_without_final_answer
else:
cot_prompt = mpo_prompt_with_final_answer
question_orig = line['question']
if listinstr(['MathVerse', 'MathVision'], dataset):
question_orig = question_orig.split('Question:', 1)[-1].strip()
question_orig = question_orig.replace('Choices:\n', '').strip()
prompt = cot_prompt.format(question=question_orig)
else:
prompt = line['question']
message[0]['value'] = prompt
return message