|
from mmengine.config import read_base |
|
import os.path as osp |
|
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner |
|
from opencompass.runners import LocalRunner, VOLCRunner |
|
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask |
|
|
|
|
|
|
|
|
|
|
|
with read_base(): |
|
|
|
|
|
|
|
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import ( |
|
mmlu_pro_datasets, |
|
) |
|
|
|
|
|
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import ( |
|
gpqa_datasets, |
|
) |
|
from opencompass.configs.datasets.bbh.bbh_0shot_nocot_gen_925fc4 import ( |
|
bbh_datasets, |
|
) |
|
from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_159614 import ( |
|
humaneval_datasets, |
|
) |
|
|
|
|
|
from opencompass.configs.datasets.IFEval.IFEval_gen_3321a3 import ( |
|
ifeval_datasets, |
|
) |
|
from opencompass.configs.datasets.livecodebench.livecodebench_gen_6966bc import ( |
|
LCBCodeGeneration_dataset, |
|
) |
|
|
|
|
|
from opencompass.configs.datasets.cmo_fib.cmo_fib_gen_ace24b import ( |
|
cmo_fib_datasets, |
|
) |
|
from opencompass.configs.datasets.aime2024.aime2024_gen_6e39a4 import ( |
|
aime2024_datasets, |
|
) |
|
from opencompass.configs.datasets.math.math_prm800k_500_0shot_cot_gen import ( |
|
math_datasets, |
|
) |
|
|
|
|
|
from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups |
|
from opencompass.configs.summarizers.groups.mmlu_pro import ( |
|
mmlu_pro_summary_groups, |
|
) |
|
|
|
|
|
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import ( |
|
models as hf_internlm2_5_7b_chat_model, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets = sum( |
|
(v for k, v in locals().items() if k.endswith('_datasets')), [] |
|
) + [LCBCodeGeneration_dataset] |
|
|
|
|
|
|
|
|
|
|
|
core_summary_groups = [ |
|
{ |
|
'name': 'core_average', |
|
'subsets': [ |
|
['IFEval', 'Prompt-level-strict-accuracy'], |
|
['bbh', 'naive_average'], |
|
['math_prm800k_500', 'accuracy'], |
|
['cmo_fib', 'accuracy'], |
|
['aime2024', 'accuracy'], |
|
['GPQA_diamond', 'accuracy'], |
|
['mmlu_pro', 'naive_average'], |
|
['openai_humaneval', 'humaneval_pass@1'], |
|
['lcb_code_generation', 'pass@1'], |
|
], |
|
}, |
|
] |
|
|
|
|
|
summarizer = dict( |
|
dataset_abbrs=[ |
|
['core_average', 'naive_average'], |
|
'', |
|
'Instruction Following', |
|
['IFEval', 'Prompt-level-strict-accuracy'], |
|
'', |
|
'General Reasoning', |
|
['bbh', 'naive_average'], |
|
['GPQA_diamond', 'accuracy'], |
|
'', |
|
'Math Calculation', |
|
['math_prm800k_500', 'accuracy'], |
|
['cmo_fib', 'accuracy'], |
|
['aime2024', 'accuracy'], |
|
'', |
|
'Knowledge', |
|
['mmlu_pro', 'naive_average'], |
|
'', |
|
'Code', |
|
['openai_humaneval', 'humaneval_pass@1'], |
|
['lcb_code_generation', 'pass@1'], |
|
], |
|
summary_groups=sum( |
|
[v for k, v in locals().items() if k.endswith('_summary_groups')], [] |
|
), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
models = sum([v for k, v in locals().items() if k.endswith('_model')], []) |
|
|
|
|
|
|
|
|
|
|
|
|
|
infer = dict( |
|
partitioner=dict(type=NumWorkerPartitioner, num_worker=8), |
|
runner=dict( |
|
type=LocalRunner, |
|
max_num_workers=16, |
|
retry=0, |
|
task=dict(type=OpenICLInferTask), |
|
), |
|
) |
|
|
|
|
|
eval = dict( |
|
partitioner=dict(type=NaivePartitioner, n=10), |
|
runner=dict( |
|
type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLEvalTask) |
|
), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
work_dir = './outputs/oc_academic_202412' |
|
|