Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- InternVL/.github/ISSUE_TEMPLATE/1-bug-report.yml +54 -0
- InternVL/.github/ISSUE_TEMPLATE/2-feature-request.yml +31 -0
- InternVL/.github/ISSUE_TEMPLATE/3-documentation.yml +23 -0
- InternVL/internvl_g/eval/evaluate_caption.py +237 -0
- InternVL/internvl_g/internvl/dist_utils.py +101 -0
- InternVL/internvl_g/internvl/model/__init__.py +0 -0
- InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/__init__.py +87 -0
- InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_intern_vit.py +342 -0
- InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_internvl.py +669 -0
- InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_qllama.py +1073 -0
- InternVL/internvl_g/internvl/train/__init__.py +0 -0
- InternVL/internvl_g/internvl/train/dataset.py +283 -0
- InternVL/internvl_g/internvl/train/internvl_stage2_finetune.py +286 -0
- InternVL/internvl_g/internvl/train/trainer_monkey_patch.py +150 -0
- InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_coco_364_bs1024_ep5.sh +58 -0
- InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_flickr_364_bs1024_ep10.sh +58 -0
- InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_flickrcn_364_bs1024_ep10.sh +58 -0
- InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_head_4gpu.sh +59 -0
- InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_head_4gpu.sh +59 -0
- InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_head_4gpu.sh +59 -0
- InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_lora16_4gpu.sh +61 -0
- InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_lora16_4gpu.sh +61 -0
- InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_lora16_4gpu.sh +61 -0
- InternVL/segmentation/configs/_base_/datasets/ade20k_504x504.py +56 -0
- InternVL/segmentation/configs/_base_/datasets/ade20k_504x504_1of16.py +56 -0
- InternVL/segmentation/configs/_base_/datasets/cityscapes_1024x1024.py +35 -0
- InternVL/segmentation/configs/_base_/models/apcnet_r50-d8.py +44 -0
- InternVL/segmentation/configs/_base_/models/bisenetv1_r18-d32.py +68 -0
- InternVL/segmentation/configs/_base_/models/danet_r50-d8.py +44 -0
- InternVL/segmentation/configs/_base_/models/deeplabv3plus_r50-d8.py +46 -0
- InternVL/segmentation/configs/_base_/models/dmnet_r50-d8.py +44 -0
- InternVL/segmentation/configs/_base_/models/encnet_r50-d8.py +48 -0
- InternVL/segmentation/configs/_base_/models/erfnet_fcn.py +32 -0
- InternVL/segmentation/configs/_base_/models/fastfcn_r50-d32_jpu_psp.py +53 -0
- InternVL/segmentation/configs/_base_/models/fcn_hr18.py +52 -0
- InternVL/segmentation/configs/_base_/models/fpn_r50.py +36 -0
- InternVL/segmentation/configs/_base_/models/isanet_r50-d8.py +45 -0
- InternVL/segmentation/configs/_base_/models/lraspp_m-v3-d8.py +25 -0
- InternVL/segmentation/configs/_base_/models/pointrend_r50.py +56 -0
- InternVL/segmentation/configs/_base_/models/pspnet_unet_s5-d16.py +50 -0
- InternVL/segmentation/configs/_base_/models/upernet_r50.py +44 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_10k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_160k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_20k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_320k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_40k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_5k.py +9 -0
- InternVL/segmentation/configs/_base_/schedules/schedule_80k.py +9 -0
- InternVL/segmentation/configs/intern_vit_6b/few_shot/linear_intern_vit_6b_504_10k_ade20k_bs16_lr4e-5_1of8.py +72 -0
- InternVL/segmentation/configs/intern_vit_6b/few_shot/linear_intern_vit_6b_504_20k_ade20k_bs16_lr4e-5_1of4.py +72 -0
InternVL/.github/ISSUE_TEMPLATE/1-bug-report.yml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 🐞 Bug report
|
2 |
+
description: Create a report to help us reproduce and fix the bug
|
3 |
+
title: "[Bug] "
|
4 |
+
labels: ['Bug']
|
5 |
+
|
6 |
+
body:
|
7 |
+
- type: checkboxes
|
8 |
+
attributes:
|
9 |
+
label: Checklist
|
10 |
+
options:
|
11 |
+
- label: 1. I have searched related issues but cannot get the expected help.
|
12 |
+
- label: 2. The bug has not been fixed in the latest version.
|
13 |
+
- label: 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
|
14 |
+
- type: textarea
|
15 |
+
attributes:
|
16 |
+
label: Describe the bug
|
17 |
+
description: A clear and concise description of what the bug is.
|
18 |
+
validations:
|
19 |
+
required: true
|
20 |
+
- type: textarea
|
21 |
+
attributes:
|
22 |
+
label: Reproduction
|
23 |
+
description: |
|
24 |
+
1. What command or script did you run?
|
25 |
+
placeholder: |
|
26 |
+
A placeholder for the command.
|
27 |
+
validations:
|
28 |
+
required: true
|
29 |
+
- type: textarea
|
30 |
+
attributes:
|
31 |
+
label: Environment
|
32 |
+
description: |
|
33 |
+
1. Please run `lmdeploy check_env` to collect necessary environment information and paste it here.
|
34 |
+
2. You may add addition that may be helpful for locating the problem, such as
|
35 |
+
- Which **model** are you using?
|
36 |
+
- How you installed PyTorch \[e.g., pip, conda, source\]
|
37 |
+
- Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
|
38 |
+
placeholder: Environment here.
|
39 |
+
render: Shell
|
40 |
+
validations:
|
41 |
+
required: true
|
42 |
+
- type: textarea
|
43 |
+
attributes:
|
44 |
+
label: Error traceback
|
45 |
+
description: |
|
46 |
+
If applicable, paste the error trackback here.
|
47 |
+
placeholder: Logs and traceback here.
|
48 |
+
render: Shell
|
49 |
+
- type: markdown
|
50 |
+
attributes:
|
51 |
+
value: >
|
52 |
+
If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
|
53 |
+
|
54 |
+
Thanks for your bug report. We appreciate it a lot.
|
InternVL/.github/ISSUE_TEMPLATE/2-feature-request.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 🚀 Feature request
|
2 |
+
description: Suggest an idea for this project
|
3 |
+
title: "[Feature] "
|
4 |
+
|
5 |
+
body:
|
6 |
+
- type: markdown
|
7 |
+
attributes:
|
8 |
+
value: |
|
9 |
+
We strongly appreciate you creating a PR to implement this feature [here](https://github.com/OpenGVLab/InternVL/pulls)!
|
10 |
+
If you need our help, please fill in as much of the following form as you're able to.
|
11 |
+
|
12 |
+
**The less clear the description, the longer it will take to solve it.**
|
13 |
+
- type: textarea
|
14 |
+
attributes:
|
15 |
+
label: Motivation
|
16 |
+
description: |
|
17 |
+
A clear and concise description of the motivation of the feature.
|
18 |
+
Ex1. It is inconvenient when \[....\].
|
19 |
+
validations:
|
20 |
+
required: true
|
21 |
+
- type: textarea
|
22 |
+
attributes:
|
23 |
+
label: Related resources
|
24 |
+
description: |
|
25 |
+
If there is an official code release or third-party implementations, please also provide the information here, which would be very helpful.
|
26 |
+
- type: textarea
|
27 |
+
attributes:
|
28 |
+
label: Additional context
|
29 |
+
description: |
|
30 |
+
Add any other context or screenshots about the feature request here.
|
31 |
+
If you would like to implement the feature and create a PR, please leave a comment here and that would be much appreciated.
|
InternVL/.github/ISSUE_TEMPLATE/3-documentation.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 📚 Documentation
|
2 |
+
description: Report an issue related to the documentation.
|
3 |
+
labels: "kind/doc,status/unconfirmed"
|
4 |
+
title: "[Docs] "
|
5 |
+
|
6 |
+
body:
|
7 |
+
- type: textarea
|
8 |
+
attributes:
|
9 |
+
label: 📚 The doc issue
|
10 |
+
description: >
|
11 |
+
A clear and concise description the issue.
|
12 |
+
validations:
|
13 |
+
required: true
|
14 |
+
|
15 |
+
- type: textarea
|
16 |
+
attributes:
|
17 |
+
label: Suggest a potential alternative/fix
|
18 |
+
description: >
|
19 |
+
Tell us how we could improve the documentation in this regard.
|
20 |
+
- type: markdown
|
21 |
+
attributes:
|
22 |
+
value: >
|
23 |
+
Thanks for contributing 🎉!
|
InternVL/internvl_g/eval/evaluate_caption.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import itertools
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from internvl.model.internvl_stage2 import InternVLConfig, InternVLModel
|
12 |
+
from PIL import Image
|
13 |
+
from pycocoevalcap.eval import COCOEvalCap
|
14 |
+
from pycocotools.coco import COCO
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
from tqdm import tqdm
|
17 |
+
from transformers import LlamaTokenizer
|
18 |
+
|
19 |
+
ds_collections = {
|
20 |
+
'flickr30k': {
|
21 |
+
'root': 'data/flickr30k/',
|
22 |
+
'annotation': 'data/flickr30k/flickr30k_test_karpathy.json',
|
23 |
+
},
|
24 |
+
'coco': {
|
25 |
+
'root': 'data/coco/',
|
26 |
+
'annotation': ['data/coco/annotations/coco_karpathy_test.json',
|
27 |
+
'data/coco/annotations/coco_karpathy_test_gt.json'],
|
28 |
+
},
|
29 |
+
'nocaps': {
|
30 |
+
'root': 'data/nocaps/images',
|
31 |
+
'annotation': 'data/nocaps/nocaps_val_4500_captions.json',
|
32 |
+
},
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
class CaptionDataset(torch.utils.data.Dataset):
|
37 |
+
|
38 |
+
def __init__(self, name, root, annotation, prompt, input_size=224):
|
39 |
+
if name == 'coco':
|
40 |
+
self.images = json.load(open(annotation))
|
41 |
+
else:
|
42 |
+
self.images = json.load(open(annotation))['images']
|
43 |
+
self.name = name
|
44 |
+
self.prompt = prompt
|
45 |
+
self.root = root
|
46 |
+
self.transform = T.Compose([
|
47 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
48 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
49 |
+
T.ToTensor(),
|
50 |
+
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
51 |
+
])
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return len(self.images)
|
55 |
+
|
56 |
+
def __getitem__(self, idx):
|
57 |
+
if self.name == 'coco':
|
58 |
+
filename = self.images[idx]['image']
|
59 |
+
image_id = int(filename.split('_')[-1].replace('.jpg', ''))
|
60 |
+
image_path = os.path.join(self.root, filename)
|
61 |
+
else:
|
62 |
+
image_id = self.images[idx]['id']
|
63 |
+
if 'file_name' in self.images[idx]:
|
64 |
+
image_path = os.path.join(self.root, self.images[idx]['file_name'])
|
65 |
+
else:
|
66 |
+
image_path = os.path.join(self.root, self.images[idx]['image'])
|
67 |
+
image = Image.open(image_path)
|
68 |
+
pixel_values = self.transform(image).unsqueeze(0)
|
69 |
+
return {
|
70 |
+
'image_id': image_id,
|
71 |
+
'input_text': self.prompt,
|
72 |
+
'pixel_values': pixel_values
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
def collate_fn(inputs, tokenizer):
|
77 |
+
pixel_values = torch.cat([_['pixel_values'] for _ in inputs], dim=0)
|
78 |
+
image_ids = [_['image_id'] for _ in inputs]
|
79 |
+
input_texts = [_['input_text'] for _ in inputs]
|
80 |
+
input_tokens = tokenizer(input_texts, return_tensors='pt')
|
81 |
+
|
82 |
+
return pixel_values, image_ids, input_tokens.input_ids, input_tokens.attention_mask
|
83 |
+
|
84 |
+
|
85 |
+
class InferenceSampler(torch.utils.data.sampler.Sampler):
|
86 |
+
|
87 |
+
def __init__(self, size):
|
88 |
+
self._size = int(size)
|
89 |
+
assert size > 0
|
90 |
+
self._rank = torch.distributed.get_rank()
|
91 |
+
self._world_size = torch.distributed.get_world_size()
|
92 |
+
self._local_indices = self._get_local_indices(size, self._world_size, self._rank)
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def _get_local_indices(total_size, world_size, rank):
|
96 |
+
shard_size = total_size // world_size
|
97 |
+
left = total_size % world_size
|
98 |
+
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
|
99 |
+
|
100 |
+
begin = sum(shard_sizes[:rank])
|
101 |
+
end = min(sum(shard_sizes[:rank + 1]), total_size)
|
102 |
+
return range(begin, end)
|
103 |
+
|
104 |
+
def __iter__(self):
|
105 |
+
yield from self._local_indices
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
return len(self._local_indices)
|
109 |
+
|
110 |
+
|
111 |
+
def evaluate_qllama_model():
|
112 |
+
prompts = ['English caption:']
|
113 |
+
print('prompts:', prompts)
|
114 |
+
|
115 |
+
config = InternVLConfig.from_pretrained(args.checkpoint)
|
116 |
+
model = InternVLModel.from_pretrained(args.checkpoint, config=config).eval()
|
117 |
+
model = model.to(torch.float16).cuda()
|
118 |
+
tokenizer = LlamaTokenizer.from_pretrained(args.checkpoint)
|
119 |
+
tokenizer.add_eos_token = False
|
120 |
+
|
121 |
+
random.seed(args.seed)
|
122 |
+
summaries = []
|
123 |
+
for prompt in prompts:
|
124 |
+
for ds_name in args.datasets:
|
125 |
+
annotation = ds_collections[ds_name]['annotation']
|
126 |
+
if type(annotation) == list:
|
127 |
+
annotation = annotation[0]
|
128 |
+
if model.config.force_image_size is not None:
|
129 |
+
image_size = model.config.force_image_size
|
130 |
+
else:
|
131 |
+
image_size = model.config.vision_config.image_size
|
132 |
+
dataset = CaptionDataset(
|
133 |
+
name=ds_name,
|
134 |
+
root=ds_collections[ds_name]['root'],
|
135 |
+
annotation=annotation,
|
136 |
+
prompt=prompt,
|
137 |
+
input_size=image_size,
|
138 |
+
)
|
139 |
+
dataloader = torch.utils.data.DataLoader(
|
140 |
+
dataset=dataset,
|
141 |
+
sampler=InferenceSampler(len(dataset)),
|
142 |
+
batch_size=args.batch_size,
|
143 |
+
num_workers=args.num_workers,
|
144 |
+
pin_memory=True,
|
145 |
+
drop_last=False,
|
146 |
+
collate_fn=partial(collate_fn, tokenizer=tokenizer),
|
147 |
+
)
|
148 |
+
|
149 |
+
image_ids, captions = [], []
|
150 |
+
for _, (pixel_values, ids, input_ids, attention_mask) in tqdm(enumerate(dataloader)):
|
151 |
+
pred = model.generate(
|
152 |
+
pixel_values=pixel_values.cuda().to(torch.float16),
|
153 |
+
input_ids=input_ids.cuda(),
|
154 |
+
attention_mask=attention_mask.cuda(),
|
155 |
+
do_sample=False,
|
156 |
+
num_beams=args.num_beams,
|
157 |
+
max_new_tokens=30,
|
158 |
+
min_new_tokens=8,
|
159 |
+
use_cache=True
|
160 |
+
)
|
161 |
+
image_ids.extend(ids)
|
162 |
+
caption = [tokenizer.decode(_.cpu(), skip_special_tokens=True).strip() for _ in pred]
|
163 |
+
captions.extend(caption)
|
164 |
+
print(caption)
|
165 |
+
|
166 |
+
torch.distributed.barrier()
|
167 |
+
|
168 |
+
world_size = torch.distributed.get_world_size()
|
169 |
+
merged_ids = [None for _ in range(world_size)]
|
170 |
+
merged_captions = [None for _ in range(world_size)]
|
171 |
+
torch.distributed.all_gather_object(merged_ids, image_ids)
|
172 |
+
torch.distributed.all_gather_object(merged_captions, captions)
|
173 |
+
|
174 |
+
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)]
|
175 |
+
merged_captions = [_ for _ in itertools.chain.from_iterable(merged_captions)]
|
176 |
+
average_length = sum(len(x.split()) for x in merged_captions) / len(merged_captions)
|
177 |
+
print(f'Average length: {average_length}')
|
178 |
+
|
179 |
+
if torch.distributed.get_rank() == 0:
|
180 |
+
print(f'Evaluating {ds_name} ...')
|
181 |
+
|
182 |
+
results = []
|
183 |
+
for image_id, caption in zip(merged_ids, merged_captions):
|
184 |
+
results.append({
|
185 |
+
'image_id': int(image_id),
|
186 |
+
'caption': caption,
|
187 |
+
})
|
188 |
+
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
|
189 |
+
results_file = f'{ds_name}_{time_prefix}.json'
|
190 |
+
results_file = os.path.join(args.out_dir, results_file)
|
191 |
+
json.dump(results, open(results_file, 'w'))
|
192 |
+
|
193 |
+
annotation = ds_collections[ds_name]['annotation']
|
194 |
+
if type(annotation) == list:
|
195 |
+
annotation = annotation[-1]
|
196 |
+
coco = COCO(annotation)
|
197 |
+
coco_result = coco.loadRes(results_file)
|
198 |
+
coco_eval = COCOEvalCap(coco, coco_result)
|
199 |
+
coco_eval.evaluate()
|
200 |
+
|
201 |
+
summary = coco_eval.eval.items()
|
202 |
+
print([ds_name, prompt, average_length, summary])
|
203 |
+
summaries.append([ds_name, prompt, average_length, summary])
|
204 |
+
|
205 |
+
torch.distributed.barrier()
|
206 |
+
|
207 |
+
for summary in summaries:
|
208 |
+
print(summary)
|
209 |
+
|
210 |
+
|
211 |
+
if __name__ == '__main__':
|
212 |
+
|
213 |
+
parser = argparse.ArgumentParser()
|
214 |
+
parser.add_argument('--checkpoint', type=str, default='')
|
215 |
+
parser.add_argument('--datasets', type=str, default='coco,flickr30k,nocaps')
|
216 |
+
parser.add_argument('--batch-size', type=int, default=1)
|
217 |
+
parser.add_argument('--num-workers', type=int, default=1)
|
218 |
+
parser.add_argument('--num-beams', type=int, default=5)
|
219 |
+
parser.add_argument('--out-dir', type=str, default='results')
|
220 |
+
parser.add_argument('--seed', type=int, default=0)
|
221 |
+
args = parser.parse_args()
|
222 |
+
|
223 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
224 |
+
|
225 |
+
args.datasets = args.datasets.split(',')
|
226 |
+
print('datasets:', args.datasets)
|
227 |
+
assert args.batch_size == 1, 'Only batch size 1 is supported'
|
228 |
+
|
229 |
+
torch.distributed.init_process_group(
|
230 |
+
backend='nccl',
|
231 |
+
world_size=int(os.getenv('WORLD_SIZE', '1')),
|
232 |
+
rank=int(os.getenv('RANK', '0')),
|
233 |
+
)
|
234 |
+
|
235 |
+
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
|
236 |
+
|
237 |
+
evaluate_qllama_model()
|
InternVL/internvl_g/internvl/dist_utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import socket
|
3 |
+
import subprocess
|
4 |
+
from datetime import timedelta
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.multiprocessing as mp
|
8 |
+
from torch import distributed as dist
|
9 |
+
|
10 |
+
timeout = timedelta(minutes=60)
|
11 |
+
|
12 |
+
|
13 |
+
def _find_free_port():
|
14 |
+
# Copied from https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py # noqa: E501
|
15 |
+
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
16 |
+
# Binding to port 0 will cause the OS to find an available port for us
|
17 |
+
sock.bind(('', 0))
|
18 |
+
port = sock.getsockname()[1]
|
19 |
+
sock.close()
|
20 |
+
# NOTE: there is still a chance the port could be taken by other processes.
|
21 |
+
return port
|
22 |
+
|
23 |
+
|
24 |
+
def _is_free_port(port):
|
25 |
+
ips = socket.gethostbyname_ex(socket.gethostname())[-1]
|
26 |
+
ips.append('localhost')
|
27 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
28 |
+
return all(s.connect_ex((ip, port)) != 0 for ip in ips)
|
29 |
+
|
30 |
+
|
31 |
+
def init_dist(launcher, backend='nccl', **kwargs):
|
32 |
+
if mp.get_start_method(allow_none=True) is None:
|
33 |
+
mp.set_start_method('spawn')
|
34 |
+
if launcher == 'pytorch':
|
35 |
+
_init_dist_pytorch(backend, **kwargs)
|
36 |
+
elif launcher == 'mpi':
|
37 |
+
_init_dist_mpi(backend, **kwargs)
|
38 |
+
elif launcher == 'slurm':
|
39 |
+
_init_dist_slurm(backend, **kwargs)
|
40 |
+
else:
|
41 |
+
raise ValueError(f'Invalid launcher type: {launcher}')
|
42 |
+
|
43 |
+
|
44 |
+
def _init_dist_pytorch(backend, **kwargs):
|
45 |
+
# TODO: use local_rank instead of rank % num_gpus
|
46 |
+
rank = int(os.environ['RANK'])
|
47 |
+
num_gpus = torch.cuda.device_count()
|
48 |
+
torch.cuda.set_device(rank % num_gpus)
|
49 |
+
dist.init_process_group(backend=backend, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
def _init_dist_mpi(backend, **kwargs):
|
53 |
+
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
54 |
+
torch.cuda.set_device(local_rank)
|
55 |
+
if 'MASTER_PORT' not in os.environ:
|
56 |
+
# 29500 is torch.distributed default port
|
57 |
+
os.environ['MASTER_PORT'] = '29500'
|
58 |
+
if 'MASTER_ADDR' not in os.environ:
|
59 |
+
raise KeyError('The environment variable MASTER_ADDR is not set')
|
60 |
+
os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_SIZE']
|
61 |
+
os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_RANK']
|
62 |
+
dist.init_process_group(backend=backend, **kwargs)
|
63 |
+
|
64 |
+
|
65 |
+
def _init_dist_slurm(backend, port=None):
|
66 |
+
"""Initialize slurm distributed training environment.
|
67 |
+
|
68 |
+
If argument ``port`` is not specified, then the master port will be system
|
69 |
+
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
70 |
+
environment variable, then a default port ``29500`` will be used.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
backend (str): Backend of torch.distributed.
|
74 |
+
port (int, optional): Master port. Defaults to None.
|
75 |
+
"""
|
76 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
77 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
78 |
+
node_list = os.environ['SLURM_NODELIST']
|
79 |
+
num_gpus = torch.cuda.device_count()
|
80 |
+
torch.cuda.set_device(proc_id % num_gpus)
|
81 |
+
addr = subprocess.getoutput(
|
82 |
+
f'scontrol show hostname {node_list} | head -n1')
|
83 |
+
# specify master port
|
84 |
+
if port is not None:
|
85 |
+
os.environ['MASTER_PORT'] = str(port)
|
86 |
+
elif 'MASTER_PORT' in os.environ:
|
87 |
+
pass # use MASTER_PORT in the environment variable
|
88 |
+
else:
|
89 |
+
# if torch.distributed default port(29500) is available
|
90 |
+
# then use it, else find a free port
|
91 |
+
if _is_free_port(29500):
|
92 |
+
os.environ['MASTER_PORT'] = '29500'
|
93 |
+
else:
|
94 |
+
os.environ['MASTER_PORT'] = str(_find_free_port())
|
95 |
+
# use MASTER_ADDR in the environment variable if it already exists
|
96 |
+
if 'MASTER_ADDR' not in os.environ:
|
97 |
+
os.environ['MASTER_ADDR'] = addr
|
98 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
99 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
100 |
+
os.environ['RANK'] = str(proc_id)
|
101 |
+
dist.init_process_group(backend=backend, timeout=timeout)
|
InternVL/internvl_g/internvl/model/__init__.py
ADDED
File without changes
|
InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torchvision.transforms as T
|
10 |
+
from torchvision.transforms import InterpolationMode
|
11 |
+
from transformers import LlamaTokenizer
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
from .configuration_internvl import InternVLConfig
|
15 |
+
from .modeling_intern_vit import InternVisionModel
|
16 |
+
from .modeling_internvl import InternVL_C, InternVL_G, InternVLModel
|
17 |
+
|
18 |
+
__all__ = ['InternVisionConfig', 'InternVisionModel', 'InternVLConfig',
|
19 |
+
'InternVLModel', 'InternVL_C', 'InternVL_G']
|
20 |
+
|
21 |
+
|
22 |
+
# Prefix the text "summarize:"
|
23 |
+
class InternVLTokenizer(nn.Module):
|
24 |
+
def __init__(self, model_path):
|
25 |
+
super(InternVLTokenizer, self).__init__()
|
26 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
27 |
+
self.tokenizer.pad_token = ' ' # allow padding
|
28 |
+
self.tokenizer.add_eos_token = True
|
29 |
+
|
30 |
+
def forward(self, text, prefix='summarize:'):
|
31 |
+
if type(text) == str:
|
32 |
+
text = prefix + text
|
33 |
+
elif type(text) == list:
|
34 |
+
text = [prefix + item for item in text]
|
35 |
+
text = self.tokenizer(text, return_tensors='pt', max_length=80, truncation=True, padding='max_length').input_ids
|
36 |
+
return text
|
37 |
+
|
38 |
+
|
39 |
+
def build_transform(task, image_size=224, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
|
40 |
+
if task == 'retrieval':
|
41 |
+
transform = T.Compose([
|
42 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
43 |
+
T.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
44 |
+
T.ToTensor(),
|
45 |
+
T.Normalize(mean=mean, std=std)])
|
46 |
+
else:
|
47 |
+
transform = T.Compose([
|
48 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
49 |
+
T.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
50 |
+
T.CenterCrop(image_size),
|
51 |
+
T.ToTensor(),
|
52 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
53 |
+
return transform
|
54 |
+
|
55 |
+
|
56 |
+
def load_internvl_c_huggingface(ckpt_path, device, task):
|
57 |
+
model = InternVL_C.from_pretrained(ckpt_path, torch_dtype=torch.float16).to(device)
|
58 |
+
if model.config.use_backbone_lora:
|
59 |
+
model.vision_model.merge_and_unload()
|
60 |
+
model.vision_model = model.vision_model.model
|
61 |
+
if model.config.use_qllama_lora:
|
62 |
+
model.qllama.merge_and_unload()
|
63 |
+
model.qllama = model.qllama.model
|
64 |
+
if model.config.force_image_size is not None:
|
65 |
+
image_size = model.config.force_image_size
|
66 |
+
else:
|
67 |
+
image_size = model.config.vision_config.image_size
|
68 |
+
transform = build_transform(task, image_size)
|
69 |
+
tokenizer = InternVLTokenizer(ckpt_path)
|
70 |
+
return model, transform, tokenizer
|
71 |
+
|
72 |
+
|
73 |
+
def load_internvl_g_huggingface(ckpt_path, device, task):
|
74 |
+
model = InternVL_G.from_pretrained(ckpt_path, torch_dtype=torch.float16).to(device)
|
75 |
+
if model.config.use_backbone_lora:
|
76 |
+
model.vision_model.merge_and_unload()
|
77 |
+
model.vision_model = model.vision_model.model
|
78 |
+
if model.config.use_qllama_lora:
|
79 |
+
model.qllama.merge_and_unload()
|
80 |
+
model.qllama = model.qllama.model
|
81 |
+
if model.config.force_image_size is not None:
|
82 |
+
image_size = model.config.force_image_size
|
83 |
+
else:
|
84 |
+
image_size = model.config.vision_config.image_size
|
85 |
+
transform = build_transform(task, image_size)
|
86 |
+
tokenizer = InternVLTokenizer(ckpt_path)
|
87 |
+
return model, transform, tokenizer
|
InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_intern_vit.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
from .flash_attention import FlashAttention
|
24 |
+
has_flash_attn = True
|
25 |
+
except:
|
26 |
+
print('FlashAttention is not installed.')
|
27 |
+
has_flash_attn = False
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class InternRMSNorm(nn.Module):
|
34 |
+
def __init__(self, hidden_size, eps=1e-6):
|
35 |
+
super().__init__()
|
36 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
37 |
+
self.variance_epsilon = eps
|
38 |
+
|
39 |
+
def forward(self, hidden_states):
|
40 |
+
input_dtype = hidden_states.dtype
|
41 |
+
hidden_states = hidden_states.to(torch.float32)
|
42 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
43 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
44 |
+
return self.weight * hidden_states.to(input_dtype)
|
45 |
+
|
46 |
+
|
47 |
+
try:
|
48 |
+
from apex.normalization import FusedRMSNorm
|
49 |
+
|
50 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
51 |
+
|
52 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
53 |
+
except ImportError:
|
54 |
+
# using the normal InternRMSNorm
|
55 |
+
pass
|
56 |
+
except Exception:
|
57 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
class InternVisionEmbeddings(nn.Module):
|
62 |
+
def __init__(self, config: InternVisionConfig):
|
63 |
+
super().__init__()
|
64 |
+
self.config = config
|
65 |
+
self.embed_dim = config.hidden_size
|
66 |
+
self.image_size = config.image_size
|
67 |
+
self.patch_size = config.patch_size
|
68 |
+
|
69 |
+
self.class_embedding = nn.Parameter(
|
70 |
+
torch.randn(1, 1, self.embed_dim),
|
71 |
+
)
|
72 |
+
|
73 |
+
self.patch_embedding = nn.Conv2d(
|
74 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
75 |
+
)
|
76 |
+
|
77 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
78 |
+
self.num_positions = self.num_patches + 1
|
79 |
+
|
80 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
81 |
+
|
82 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
83 |
+
batch_size = pixel_values.shape[0]
|
84 |
+
target_dtype = self.patch_embedding.weight.dtype
|
85 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
86 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
87 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
88 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
89 |
+
embeddings = embeddings + self.position_embedding.to(target_dtype)
|
90 |
+
return embeddings
|
91 |
+
|
92 |
+
|
93 |
+
class InternAttention(nn.Module):
|
94 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
95 |
+
|
96 |
+
def __init__(self, config: InternVisionConfig):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
self.embed_dim = config.hidden_size
|
100 |
+
self.num_heads = config.num_attention_heads
|
101 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
102 |
+
if config.use_flash_attn and not has_flash_attn:
|
103 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
104 |
+
self.head_dim = self.embed_dim // self.num_heads
|
105 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
106 |
+
raise ValueError(
|
107 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
108 |
+
f' {self.num_heads}).'
|
109 |
+
)
|
110 |
+
|
111 |
+
self.scale = self.head_dim ** -0.5
|
112 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
113 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
114 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
115 |
+
|
116 |
+
self.qk_normalization = config.qk_normalization
|
117 |
+
|
118 |
+
if self.qk_normalization:
|
119 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
120 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
121 |
+
|
122 |
+
if self.use_flash_attn:
|
123 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
124 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
125 |
+
|
126 |
+
def _naive_attn(self, x):
|
127 |
+
B, N, C = x.shape
|
128 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
129 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
130 |
+
|
131 |
+
if self.qk_normalization:
|
132 |
+
B_, H_, N_, D_ = q.shape
|
133 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
134 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
135 |
+
|
136 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
137 |
+
attn = attn.softmax(dim=-1)
|
138 |
+
attn = self.attn_drop(attn)
|
139 |
+
|
140 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
141 |
+
x = self.proj(x)
|
142 |
+
x = self.proj_drop(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
146 |
+
qkv = self.qkv(x)
|
147 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
148 |
+
|
149 |
+
if self.qk_normalization:
|
150 |
+
q, k, v = qkv.unbind(2)
|
151 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
152 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
153 |
+
qkv = torch.stack([q, k, v], dim=2)
|
154 |
+
|
155 |
+
context, _ = self.inner_attn(
|
156 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
157 |
+
)
|
158 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
159 |
+
outs = self.proj_drop(outs)
|
160 |
+
return outs
|
161 |
+
|
162 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
163 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
class InternMLP(nn.Module):
|
168 |
+
def __init__(self, config: InternVisionConfig):
|
169 |
+
super().__init__()
|
170 |
+
self.config = config
|
171 |
+
self.act = ACT2FN[config.hidden_act]
|
172 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
173 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
174 |
+
|
175 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
176 |
+
hidden_states = self.fc1(hidden_states)
|
177 |
+
hidden_states = self.act(hidden_states)
|
178 |
+
hidden_states = self.fc2(hidden_states)
|
179 |
+
return hidden_states
|
180 |
+
|
181 |
+
|
182 |
+
class InternVisionEncoderLayer(nn.Module):
|
183 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
184 |
+
super().__init__()
|
185 |
+
self.embed_dim = config.hidden_size
|
186 |
+
self.intermediate_size = config.intermediate_size
|
187 |
+
|
188 |
+
self.attn = InternAttention(config)
|
189 |
+
self.mlp = InternMLP(config)
|
190 |
+
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
191 |
+
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
192 |
+
|
193 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
194 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
195 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
196 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
197 |
+
|
198 |
+
def forward(
|
199 |
+
self,
|
200 |
+
hidden_states: torch.Tensor,
|
201 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
202 |
+
"""
|
203 |
+
Args:
|
204 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
205 |
+
"""
|
206 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
207 |
+
|
208 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
209 |
+
|
210 |
+
return hidden_states
|
211 |
+
|
212 |
+
|
213 |
+
class InternVisionEncoder(nn.Module):
|
214 |
+
"""
|
215 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
216 |
+
[`InternEncoderLayer`].
|
217 |
+
|
218 |
+
Args:
|
219 |
+
config (`InternConfig`):
|
220 |
+
The corresponding vision configuration for the `InternEncoder`.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, config: InternVisionConfig):
|
224 |
+
super().__init__()
|
225 |
+
self.config = config
|
226 |
+
# stochastic depth decay rule
|
227 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
228 |
+
self.layers = nn.ModuleList([
|
229 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
230 |
+
self.gradient_checkpointing = True
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
inputs_embeds,
|
235 |
+
output_hidden_states: Optional[bool] = None,
|
236 |
+
return_dict: Optional[bool] = None,
|
237 |
+
) -> Union[Tuple, BaseModelOutput]:
|
238 |
+
r"""
|
239 |
+
Args:
|
240 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
241 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
242 |
+
output_hidden_states (`bool`, *optional*):
|
243 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
244 |
+
for more detail.
|
245 |
+
return_dict (`bool`, *optional*):
|
246 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
247 |
+
"""
|
248 |
+
output_hidden_states = (
|
249 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
250 |
+
)
|
251 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
252 |
+
|
253 |
+
encoder_states = () if output_hidden_states else None
|
254 |
+
hidden_states = inputs_embeds
|
255 |
+
|
256 |
+
for idx, encoder_layer in enumerate(self.layers):
|
257 |
+
if output_hidden_states:
|
258 |
+
encoder_states = encoder_states + (hidden_states,)
|
259 |
+
if self.gradient_checkpointing and self.training:
|
260 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
261 |
+
encoder_layer,
|
262 |
+
hidden_states)
|
263 |
+
else:
|
264 |
+
layer_outputs = encoder_layer(
|
265 |
+
hidden_states,
|
266 |
+
)
|
267 |
+
hidden_states = layer_outputs
|
268 |
+
|
269 |
+
if output_hidden_states:
|
270 |
+
encoder_states = encoder_states + (hidden_states,)
|
271 |
+
|
272 |
+
if not return_dict:
|
273 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
274 |
+
return BaseModelOutput(
|
275 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
class InternVisionModel(PreTrainedModel):
|
280 |
+
main_input_name = 'pixel_values'
|
281 |
+
config_class = InternVisionConfig
|
282 |
+
|
283 |
+
def __init__(self, config: InternVisionConfig):
|
284 |
+
super().__init__(config)
|
285 |
+
self.config = config
|
286 |
+
|
287 |
+
self.embeddings = InternVisionEmbeddings(config)
|
288 |
+
self.encoder = InternVisionEncoder(config)
|
289 |
+
|
290 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
291 |
+
pos_emb = self.embeddings.position_embedding
|
292 |
+
_, num_positions, embed_dim = pos_emb.shape
|
293 |
+
cls_emb = pos_emb[:, :1, :]
|
294 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
295 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
296 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
297 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
298 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
299 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
300 |
+
|
301 |
+
def get_input_embeddings(self):
|
302 |
+
return self.embeddings
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
307 |
+
output_hidden_states: Optional[bool] = None,
|
308 |
+
return_dict: Optional[bool] = None,
|
309 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
310 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
311 |
+
output_hidden_states = (
|
312 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
313 |
+
)
|
314 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
315 |
+
|
316 |
+
if pixel_values is None and pixel_embeds is None:
|
317 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
318 |
+
|
319 |
+
if pixel_embeds is not None:
|
320 |
+
hidden_states = pixel_embeds
|
321 |
+
else:
|
322 |
+
if len(pixel_values.shape) == 4:
|
323 |
+
hidden_states = self.embeddings(pixel_values)
|
324 |
+
else:
|
325 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
326 |
+
encoder_outputs = self.encoder(
|
327 |
+
inputs_embeds=hidden_states,
|
328 |
+
output_hidden_states=output_hidden_states,
|
329 |
+
return_dict=return_dict,
|
330 |
+
)
|
331 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
332 |
+
pooled_output = last_hidden_state[:, 0, :]
|
333 |
+
|
334 |
+
if not return_dict:
|
335 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
336 |
+
|
337 |
+
return BaseModelOutputWithPooling(
|
338 |
+
last_hidden_state=last_hidden_state,
|
339 |
+
pooler_output=pooled_output,
|
340 |
+
hidden_states=encoder_outputs.hidden_states,
|
341 |
+
attentions=encoder_outputs.attentions,
|
342 |
+
)
|
InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_internvl.py
ADDED
@@ -0,0 +1,669 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from functools import partial
|
8 |
+
from typing import Any, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.distributed as dist
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torch.utils.checkpoint
|
15 |
+
from peft import LoraConfig, get_peft_model
|
16 |
+
from timm.models.layers import DropPath
|
17 |
+
from torch import nn
|
18 |
+
from transformers import GenerationConfig
|
19 |
+
from transformers.modeling_utils import PreTrainedModel
|
20 |
+
from transformers.utils import ModelOutput, logging
|
21 |
+
|
22 |
+
from .configuration_internvl import InternVLConfig
|
23 |
+
from .modeling_intern_vit import (InternVisionEmbeddings, InternVisionEncoder,
|
24 |
+
InternVisionModel)
|
25 |
+
from .modeling_qllama import LlamaForCausalLM, _expand_mask, _make_causal_mask
|
26 |
+
|
27 |
+
try:
|
28 |
+
from .flash_attention import FlashAttention # v1/v2
|
29 |
+
except:
|
30 |
+
print('FlashAttention is not installed.')
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class InternVLPreTrainedModel(PreTrainedModel):
|
36 |
+
"""
|
37 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
38 |
+
models.
|
39 |
+
"""
|
40 |
+
|
41 |
+
config_class = InternVLConfig
|
42 |
+
base_model_prefix = 'internvl'
|
43 |
+
supports_gradient_checkpointing = True
|
44 |
+
_keys_to_ignore_on_load_missing = [
|
45 |
+
r'position_ids',
|
46 |
+
]
|
47 |
+
_no_split_modules = ['InternAttention', 'LlamaDecoderLayer', 'LlamaForCausalLM']
|
48 |
+
_skip_keys_device_placement = 'past_key_values'
|
49 |
+
_keep_in_fp32_modules = ['wo']
|
50 |
+
|
51 |
+
# def _init_weights(self, module):
|
52 |
+
# """Initialize the weights"""
|
53 |
+
# factor = self.config.initializer_range
|
54 |
+
# if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
55 |
+
# module.weight.data.normal_(mean=0.0, std=factor)
|
56 |
+
# if hasattr(module, 'bias') and module.bias is not None:
|
57 |
+
# module.bias.data.zero_()
|
58 |
+
# if isinstance(module, InternVisionEmbeddings):
|
59 |
+
# if hasattr(self.config, 'vision_config'):
|
60 |
+
# factor = self.config.vision_config.initializer_range
|
61 |
+
# nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
|
62 |
+
# nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
|
63 |
+
# elif isinstance(module, nn.LayerNorm):
|
64 |
+
# module.bias.data.zero_()
|
65 |
+
# module.weight.data.fill_(1.0)
|
66 |
+
# elif isinstance(module, nn.Linear) and module.bias is not None:
|
67 |
+
# module.bias.data.zero_()
|
68 |
+
|
69 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
70 |
+
if isinstance(module, InternVisionModel):
|
71 |
+
module.gradient_checkpointing = value
|
72 |
+
if isinstance(module, InternVisionEncoder):
|
73 |
+
module.gradient_checkpointing = value
|
74 |
+
|
75 |
+
|
76 |
+
class CrossAttention(nn.Module):
|
77 |
+
def __init__(
|
78 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
79 |
+
proj_drop=0., attn_head_dim=None, out_dim=None):
|
80 |
+
super().__init__()
|
81 |
+
if out_dim is None:
|
82 |
+
out_dim = dim
|
83 |
+
self.num_heads = num_heads
|
84 |
+
head_dim = dim // num_heads
|
85 |
+
if attn_head_dim is not None:
|
86 |
+
head_dim = attn_head_dim
|
87 |
+
all_head_dim = head_dim * self.num_heads
|
88 |
+
self.scale = qk_scale or head_dim ** -0.5
|
89 |
+
assert all_head_dim == dim
|
90 |
+
|
91 |
+
self.q = nn.Linear(dim, all_head_dim, bias=False)
|
92 |
+
self.k = nn.Linear(dim, all_head_dim, bias=False)
|
93 |
+
self.v = nn.Linear(dim, all_head_dim, bias=False)
|
94 |
+
|
95 |
+
if qkv_bias:
|
96 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
97 |
+
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
|
98 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
99 |
+
else:
|
100 |
+
self.q_bias = None
|
101 |
+
self.k_bias = None
|
102 |
+
self.v_bias = None
|
103 |
+
|
104 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
105 |
+
self.proj = nn.Linear(all_head_dim, out_dim)
|
106 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
107 |
+
|
108 |
+
def forward(self, x, k=None, v=None):
|
109 |
+
B, N, C = x.shape
|
110 |
+
N_k = k.shape[1]
|
111 |
+
N_v = v.shape[1]
|
112 |
+
|
113 |
+
q_bias, k_bias, v_bias = None, None, None
|
114 |
+
if self.q_bias is not None:
|
115 |
+
q_bias = self.q_bias
|
116 |
+
k_bias = self.k_bias
|
117 |
+
v_bias = self.v_bias
|
118 |
+
|
119 |
+
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
|
120 |
+
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
|
121 |
+
|
122 |
+
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
|
123 |
+
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
|
124 |
+
|
125 |
+
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
|
126 |
+
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
|
127 |
+
|
128 |
+
q = q * self.scale
|
129 |
+
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
|
130 |
+
|
131 |
+
attn = attn.softmax(dim=-1)
|
132 |
+
attn = self.attn_drop(attn)
|
133 |
+
|
134 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
135 |
+
x = self.proj(x)
|
136 |
+
x = self.proj_drop(x)
|
137 |
+
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class AttentiveBlock(nn.Module):
|
142 |
+
|
143 |
+
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
144 |
+
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.norm1_q = norm_layer(dim)
|
148 |
+
self.norm1_k = norm_layer(dim)
|
149 |
+
self.norm1_v = norm_layer(dim)
|
150 |
+
self.cross_attn = CrossAttention(
|
151 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
|
152 |
+
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
|
153 |
+
|
154 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
155 |
+
|
156 |
+
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
|
157 |
+
x_q = self.norm1_q(x_q + pos_q)
|
158 |
+
x_k = self.norm1_k(x_kv + pos_k)
|
159 |
+
x_v = self.norm1_v(x_kv)
|
160 |
+
x = self.cross_attn(x_q, k=x_k, v=x_v)
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class AttentionPoolingBlock(AttentiveBlock):
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
x_q = x.mean(1, keepdim=True)
|
169 |
+
x_kv, pos_q, pos_k = x, 0, 0
|
170 |
+
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
|
171 |
+
x = x.squeeze(1)
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
@dataclass
|
176 |
+
class InternVLModelOutput(ModelOutput):
|
177 |
+
"""
|
178 |
+
Class defining the outputs of [`InternVLModelOutput`].
|
179 |
+
"""
|
180 |
+
|
181 |
+
loss: Optional[torch.FloatTensor] = None
|
182 |
+
loss_itm: Optional[torch.FloatTensor] = None
|
183 |
+
loss_itc: Optional[torch.FloatTensor] = None
|
184 |
+
loss_itg: Optional[torch.FloatTensor] = None
|
185 |
+
|
186 |
+
def to_tuple(self) -> Tuple[Any]:
|
187 |
+
return tuple(
|
188 |
+
self[k]
|
189 |
+
if k not in ['loss', 'loss_itm', 'loss_itc', 'loss_itg']
|
190 |
+
else getattr(self, k).to_tuple()
|
191 |
+
for k in self.keys()
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
class GatherLayer(torch.autograd.Function):
|
196 |
+
"""Gather tensors from all process, supporting backward propagation.
|
197 |
+
"""
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def forward(ctx, input):
|
201 |
+
ctx.save_for_backward(input)
|
202 |
+
output = [torch.zeros_like(input) for _ in range(dist.get_world_size())]
|
203 |
+
dist.all_gather(output, input)
|
204 |
+
return torch.stack(output, 0)
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def backward(ctx, grads):
|
208 |
+
input, = ctx.saved_tensors
|
209 |
+
dist.all_reduce(grads)
|
210 |
+
grad_out = torch.zeros_like(input)
|
211 |
+
grad_out[:] = grads[dist.get_rank()]
|
212 |
+
return grad_out
|
213 |
+
|
214 |
+
|
215 |
+
class InternVLModel(InternVLPreTrainedModel):
|
216 |
+
config_class = InternVLConfig
|
217 |
+
main_input_name = 'pixel_values'
|
218 |
+
|
219 |
+
def __init__(self, config: InternVLConfig):
|
220 |
+
super().__init__(config)
|
221 |
+
|
222 |
+
text_hidden_size = config.qllama_config.hidden_size
|
223 |
+
vision_hidden_size = config.vision_config.hidden_size
|
224 |
+
clip_embed_dim = config.clip_embed_dim
|
225 |
+
attn_pool_num_heads = config.attn_pool_num_heads
|
226 |
+
config.qllama_config.num_query_token = config.num_query_token
|
227 |
+
self.num_query_token = config.num_query_token
|
228 |
+
self.label_smoothing = config.label_smoothing
|
229 |
+
|
230 |
+
self.vision_model = InternVisionModel(config.vision_config) # frozen
|
231 |
+
self.qllama = LlamaForCausalLM(config.qllama_config) # frozen
|
232 |
+
self.query_tokens = nn.Parameter( # trainable
|
233 |
+
torch.zeros(1, config.num_query_token, text_hidden_size)
|
234 |
+
)
|
235 |
+
|
236 |
+
self.text_projection = nn.Parameter(torch.empty(text_hidden_size, clip_embed_dim)) # frozen
|
237 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) # trainable
|
238 |
+
self.clip_projector = AttentionPoolingBlock( # frozen
|
239 |
+
dim=vision_hidden_size, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
|
240 |
+
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
|
241 |
+
self.clip_projector2 = AttentionPoolingBlock( # trainable
|
242 |
+
dim=text_hidden_size, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
|
243 |
+
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
|
244 |
+
self.itm_head = nn.Linear(text_hidden_size, 2) # trainable
|
245 |
+
self.gradient_checkpointing = True
|
246 |
+
|
247 |
+
# Initialize weights and apply final processing
|
248 |
+
# self.post_init()
|
249 |
+
|
250 |
+
if config.use_backbone_lora:
|
251 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=config.use_backbone_lora * 2)
|
252 |
+
if config.use_qllama_lora:
|
253 |
+
self.wrap_qllama_lora(r=config.use_qllama_lora, lora_alpha=config.use_qllama_lora * 2)
|
254 |
+
if config.force_image_size:
|
255 |
+
self.vision_model.resize_pos_embeddings(
|
256 |
+
old_size=config.vision_config.image_size,
|
257 |
+
new_size=config.force_image_size,
|
258 |
+
patch_size=config.vision_config.patch_size
|
259 |
+
)
|
260 |
+
|
261 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
262 |
+
lora_config = LoraConfig(
|
263 |
+
r=r,
|
264 |
+
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
265 |
+
lora_alpha=lora_alpha,
|
266 |
+
lora_dropout=lora_dropout,
|
267 |
+
)
|
268 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
269 |
+
self.vision_model.print_trainable_parameters()
|
270 |
+
|
271 |
+
def wrap_qllama_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
272 |
+
lora_config = LoraConfig(
|
273 |
+
r=r,
|
274 |
+
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
275 |
+
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
|
276 |
+
lora_alpha=lora_alpha,
|
277 |
+
lora_dropout=lora_dropout,
|
278 |
+
)
|
279 |
+
self.qllama = get_peft_model(self.qllama, lora_config)
|
280 |
+
self.qllama.print_trainable_parameters()
|
281 |
+
|
282 |
+
def get_input_embeddings(self):
|
283 |
+
return self.qllama.get_input_embeddings()
|
284 |
+
|
285 |
+
def set_input_embeddings(self, value):
|
286 |
+
self.qllama.set_input_embeddings(value)
|
287 |
+
|
288 |
+
def set_output_embeddings(self, new_embeddings):
|
289 |
+
self.qllama.set_output_embeddings(new_embeddings)
|
290 |
+
|
291 |
+
def get_output_embeddings(self) -> nn.Module:
|
292 |
+
return self.qllama.get_output_embeddings()
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def _prepare_attention_mask(
|
296 |
+
self,
|
297 |
+
image_attention_mask: torch.LongTensor,
|
298 |
+
attention_mask: torch.LongTensor,
|
299 |
+
input_embeds: torch.FloatTensor,
|
300 |
+
repeat_time: int,
|
301 |
+
):
|
302 |
+
# itm, itc
|
303 |
+
attention_mask = torch.cat([image_attention_mask, attention_mask], dim=1)
|
304 |
+
expand_mask = _expand_mask(attention_mask, input_embeds.dtype).to(
|
305 |
+
input_embeds.device) # [bsz, 1, tgt_seq_len, src_seq_len]
|
306 |
+
itm_mask_neg, itm_mask_pos, itc_mask = torch.chunk(expand_mask, repeat_time, dim=0)
|
307 |
+
|
308 |
+
itc_mask[:, :, :self.num_query_token, self.num_query_token:] = torch.finfo(input_embeds.dtype).min
|
309 |
+
itc_mask[:, :, self.num_query_token:, :self.num_query_token] = torch.finfo(input_embeds.dtype).min
|
310 |
+
itc_mask_causal = _make_causal_mask(
|
311 |
+
(itc_mask.shape[0], itc_mask.shape[2] - self.num_query_token),
|
312 |
+
input_embeds.dtype,
|
313 |
+
device=input_embeds.device
|
314 |
+
)
|
315 |
+
# use causal mask for text in itc
|
316 |
+
itc_mask[:, :, self.num_query_token:, self.num_query_token:] += itc_mask_causal
|
317 |
+
|
318 |
+
attention_mask = torch.cat([itm_mask_neg, itm_mask_pos, itc_mask], dim=0)
|
319 |
+
|
320 |
+
return attention_mask
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
pixel_values: torch.FloatTensor,
|
325 |
+
positive_input_ids: torch.FloatTensor,
|
326 |
+
positive_attention_mask: torch.LongTensor,
|
327 |
+
negative_input_ids: torch.FloatTensor,
|
328 |
+
negative_attention_mask: torch.LongTensor,
|
329 |
+
summarize_input_ids: torch.FloatTensor,
|
330 |
+
summarize_attention_mask: torch.LongTensor,
|
331 |
+
input_ids: torch.FloatTensor,
|
332 |
+
attention_mask: torch.LongTensor,
|
333 |
+
image_ids: torch.LongTensor,
|
334 |
+
labels: torch.LongTensor,
|
335 |
+
output_attentions: Optional[bool] = None,
|
336 |
+
output_hidden_states: Optional[bool] = None,
|
337 |
+
return_dict: Optional[bool] = None,
|
338 |
+
) -> Union[Tuple, InternVLModelOutput]:
|
339 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
340 |
+
|
341 |
+
# step 1: forward the images through the vision encoder,
|
342 |
+
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
|
343 |
+
vision_outputs = self.vision_model(
|
344 |
+
pixel_values=pixel_values,
|
345 |
+
output_hidden_states=output_hidden_states,
|
346 |
+
return_dict=return_dict)
|
347 |
+
image_embeds = vision_outputs[0]
|
348 |
+
backbone_embeds = self.clip_projector(image_embeds)
|
349 |
+
|
350 |
+
# step 2: prepare input_ids and attention_mask for two sub-tasks:
|
351 |
+
# 1) image-text matching; 2) image-text contrastive learning.
|
352 |
+
batch_size = input_ids.shape[0]
|
353 |
+
input_ids = torch.cat([negative_input_ids, positive_input_ids,
|
354 |
+
summarize_input_ids], dim=0) # [3 * batch_size, seq_len]
|
355 |
+
itm_attention_mask = torch.cat(
|
356 |
+
[negative_attention_mask, positive_attention_mask], dim=0)
|
357 |
+
attention_mask = torch.cat(
|
358 |
+
[itm_attention_mask, summarize_attention_mask], dim=0) # [3 * batch_size, seq_len]
|
359 |
+
|
360 |
+
repeat_time = input_ids.size(0) // batch_size
|
361 |
+
# step 3: forward the input_ids and attention_mask through the text encoder.
|
362 |
+
input_embeds = self.get_input_embeddings()(input_ids)
|
363 |
+
query_tokens = self.query_tokens.repeat(repeat_time * batch_size, 1, 1)
|
364 |
+
input_embeds = torch.cat([query_tokens, input_embeds], dim=1)
|
365 |
+
image_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
366 |
+
attention_mask = self._prepare_attention_mask(
|
367 |
+
image_attention_mask, attention_mask, input_embeds, repeat_time
|
368 |
+
)
|
369 |
+
if type(self.qllama.model) == LlamaForCausalLM:
|
370 |
+
outputs = self.qllama.model.model.forward_train(
|
371 |
+
inputs_embeds=input_embeds,
|
372 |
+
vision_hidden_states=image_embeds,
|
373 |
+
attention_mask=attention_mask,
|
374 |
+
output_attentions=output_attentions,
|
375 |
+
output_hidden_states=output_hidden_states,
|
376 |
+
return_dict=return_dict,
|
377 |
+
repeat_time=repeat_time,
|
378 |
+
).last_hidden_state
|
379 |
+
else:
|
380 |
+
outputs = self.qllama.model.forward_train(
|
381 |
+
inputs_embeds=input_embeds,
|
382 |
+
vision_hidden_states=image_embeds,
|
383 |
+
attention_mask=attention_mask,
|
384 |
+
output_attentions=output_attentions,
|
385 |
+
output_hidden_states=output_hidden_states,
|
386 |
+
return_dict=return_dict,
|
387 |
+
repeat_time=repeat_time,
|
388 |
+
).last_hidden_state
|
389 |
+
image_embeds = outputs[:, :self.num_query_token]
|
390 |
+
text_embeds = outputs[:, self.num_query_token:]
|
391 |
+
image_itm_neg, image_itm_pos, image_itc = image_embeds.chunk(repeat_time, dim=0)
|
392 |
+
text_itm_neg, text_itm_pos, text_itc = text_embeds.chunk(repeat_time, dim=0)
|
393 |
+
image_itm = torch.cat([image_itm_neg, image_itm_pos], dim=0)
|
394 |
+
|
395 |
+
###============== Image-Text Matching ===================###
|
396 |
+
image_itm = self.itm_head(image_itm)
|
397 |
+
logits = image_itm.mean(dim=1)
|
398 |
+
itm_labels = torch.cat([
|
399 |
+
torch.zeros(batch_size, dtype=torch.long, device=logits.device),
|
400 |
+
torch.ones(batch_size, dtype=torch.long, device=logits.device)
|
401 |
+
], dim=0)
|
402 |
+
loss_itm = F.cross_entropy(logits, itm_labels)
|
403 |
+
neg_match_acc = ((logits[:batch_size].argmax(dim=-1) == 0) / batch_size).sum()
|
404 |
+
pos_match_acc = ((logits[batch_size:].argmax(dim=-1) == 1) / batch_size).sum()
|
405 |
+
|
406 |
+
###============== Image-Text Contrastive ===================###
|
407 |
+
image_itc = self.clip_projector2(image_itc)
|
408 |
+
|
409 |
+
selected = summarize_attention_mask.sum(1) - 1
|
410 |
+
text_itc = text_itc[torch.arange(text_itc.shape[0]), selected]
|
411 |
+
text_itc = text_itc @ self.text_projection
|
412 |
+
|
413 |
+
# normalized features
|
414 |
+
backbone_embeds = backbone_embeds / backbone_embeds.norm(dim=1, keepdim=True)
|
415 |
+
image_itc = image_itc / image_itc.norm(dim=1, keepdim=True)
|
416 |
+
text_itc = text_itc / text_itc.norm(dim=1, keepdim=True)
|
417 |
+
backbone_embeds_all = GatherLayer.apply(backbone_embeds).flatten(0, 1)
|
418 |
+
image_itc_all = GatherLayer.apply(image_itc).flatten(0, 1)
|
419 |
+
text_itc_all = GatherLayer.apply(text_itc).flatten(0, 1)
|
420 |
+
|
421 |
+
# cosine similarity as logits
|
422 |
+
logit_scale = self.logit_scale.exp()
|
423 |
+
sim_i2t = logit_scale * (image_itc @ text_itc_all.t())
|
424 |
+
sim_t2i = logit_scale * (text_itc @ image_itc_all.t())
|
425 |
+
backbone_i2t = logit_scale * (backbone_embeds @ text_itc_all.t())
|
426 |
+
backbone_t2i = logit_scale * (text_itc @ backbone_embeds_all.t())
|
427 |
+
|
428 |
+
image_ids = image_ids.view(-1, 1)
|
429 |
+
image_ids_all = GatherLayer.apply(image_ids).flatten(0, 1)
|
430 |
+
pos_idx = torch.eq(image_ids, image_ids_all.t()).float()
|
431 |
+
sim_targets = pos_idx / pos_idx.sum(1, keepdim=True)
|
432 |
+
|
433 |
+
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1) * sim_targets, dim=1).mean()
|
434 |
+
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1) * sim_targets, dim=1).mean()
|
435 |
+
loss_backbone_t2i = -torch.sum(F.log_softmax(backbone_t2i, dim=1) * sim_targets, dim=1).mean()
|
436 |
+
loss_backbone_i2t = -torch.sum(F.log_softmax(backbone_i2t, dim=1) * sim_targets, dim=1).mean()
|
437 |
+
loss_itc = (loss_t2i + loss_i2t) / 2 + (loss_backbone_t2i + loss_backbone_i2t) / 2
|
438 |
+
|
439 |
+
vision_sim = F.cosine_similarity(backbone_embeds.detach(), image_itc).mean()
|
440 |
+
|
441 |
+
loss = loss_itm + loss_itc
|
442 |
+
if dist.get_rank() == 0:
|
443 |
+
print(f'loss: {loss.item()}, loss_itm: {loss_itm.item()}, loss_itc: {loss_itc.item()}, '
|
444 |
+
f'vision_similarity: {round(vision_sim.item(), 5)}, '
|
445 |
+
f'logit scale: {round(1.0 / logit_scale.item(), 5)}, '
|
446 |
+
f'pos_match_acc: {round(pos_match_acc.item(), 4)}, '
|
447 |
+
f'neg_match_acc: {round(neg_match_acc.item(), 4)}')
|
448 |
+
|
449 |
+
return InternVLModelOutput(
|
450 |
+
loss=loss,
|
451 |
+
loss_itc=loss_itc.detach(),
|
452 |
+
loss_itm=loss_itm.detach(),
|
453 |
+
)
|
454 |
+
|
455 |
+
@torch.no_grad()
|
456 |
+
def generate(
|
457 |
+
self,
|
458 |
+
pixel_values: torch.FloatTensor,
|
459 |
+
input_ids: torch.FloatTensor,
|
460 |
+
attention_mask: torch.LongTensor,
|
461 |
+
generation_config: Optional[GenerationConfig] = None,
|
462 |
+
output_hidden_states: Optional[bool] = None,
|
463 |
+
return_dict: Optional[bool] = None,
|
464 |
+
**generate_kwargs,
|
465 |
+
) -> torch.LongTensor:
|
466 |
+
|
467 |
+
vision_outputs = self.vision_model(
|
468 |
+
pixel_values=pixel_values,
|
469 |
+
output_hidden_states=output_hidden_states,
|
470 |
+
return_dict=return_dict)
|
471 |
+
image_embeds = vision_outputs[0]
|
472 |
+
|
473 |
+
batch_size = image_embeds.shape[0]
|
474 |
+
input_embeds = self.get_input_embeddings()(input_ids)
|
475 |
+
query_tokens = self.query_tokens.repeat(batch_size, 1, 1)
|
476 |
+
input_embeds = torch.cat([query_tokens, input_embeds], dim=1)
|
477 |
+
image_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
478 |
+
attention_mask = torch.cat([image_attention_mask, attention_mask], dim=1)
|
479 |
+
|
480 |
+
outputs = self.qllama.generate(
|
481 |
+
inputs_embeds=input_embeds,
|
482 |
+
attention_mask=attention_mask,
|
483 |
+
vision_hidden_states=image_embeds,
|
484 |
+
generation_config=generation_config,
|
485 |
+
use_zero_attention_mask=True,
|
486 |
+
**generate_kwargs,
|
487 |
+
)
|
488 |
+
|
489 |
+
return outputs
|
490 |
+
|
491 |
+
def get_text_features(
|
492 |
+
self,
|
493 |
+
input_ids: torch.Tensor,
|
494 |
+
attention_mask: torch.Tensor,
|
495 |
+
output_attentions: Optional[bool] = None,
|
496 |
+
output_hidden_states: Optional[bool] = None,
|
497 |
+
return_dict: Optional[bool] = None,
|
498 |
+
):
|
499 |
+
r"""
|
500 |
+
Returns:
|
501 |
+
text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`):
|
502 |
+
The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that
|
503 |
+
contains the language model logits, the past key values and the hidden states if
|
504 |
+
`output_hidden_states=True`.
|
505 |
+
```"""
|
506 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
507 |
+
output_hidden_states = (
|
508 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
509 |
+
)
|
510 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
511 |
+
|
512 |
+
input_embeds = self.get_input_embeddings()(input_ids)
|
513 |
+
attention_mask = _expand_mask(attention_mask, input_embeds.dtype).to(
|
514 |
+
input_embeds.device) # [bsz, 1, tgt_seq_len, src_seq_len]
|
515 |
+
attention_mask += _make_causal_mask(
|
516 |
+
(attention_mask.shape[0], attention_mask.shape[2]),
|
517 |
+
input_embeds.dtype,
|
518 |
+
device=input_embeds.device
|
519 |
+
)
|
520 |
+
if type(self.qllama.model) == LlamaForCausalLM:
|
521 |
+
outputs = self.qllama.model.model.forward_train(
|
522 |
+
inputs_embeds=input_embeds,
|
523 |
+
vision_hidden_states=None,
|
524 |
+
attention_mask=attention_mask,
|
525 |
+
output_attentions=output_attentions,
|
526 |
+
output_hidden_states=output_hidden_states,
|
527 |
+
return_dict=return_dict,
|
528 |
+
).last_hidden_state
|
529 |
+
else:
|
530 |
+
outputs = self.qllama.model.forward_train(
|
531 |
+
inputs_embeds=input_embeds,
|
532 |
+
vision_hidden_states=None,
|
533 |
+
attention_mask=attention_mask,
|
534 |
+
output_attentions=output_attentions,
|
535 |
+
output_hidden_states=output_hidden_states,
|
536 |
+
return_dict=return_dict,
|
537 |
+
).last_hidden_state
|
538 |
+
return outputs
|
539 |
+
|
540 |
+
def get_image_features(
|
541 |
+
self,
|
542 |
+
pixel_values: torch.FloatTensor,
|
543 |
+
output_attentions: Optional[bool] = None,
|
544 |
+
output_hidden_states: Optional[bool] = None,
|
545 |
+
return_dict: Optional[bool] = None,
|
546 |
+
):
|
547 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
548 |
+
output_hidden_states = (
|
549 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
550 |
+
)
|
551 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
552 |
+
|
553 |
+
vision_outputs = self.vision_model(
|
554 |
+
pixel_values=pixel_values,
|
555 |
+
output_hidden_states=output_hidden_states,
|
556 |
+
return_dict=return_dict)
|
557 |
+
image_embeds = vision_outputs[0]
|
558 |
+
backbone_embeds = image_embeds
|
559 |
+
|
560 |
+
batch_size = image_embeds.shape[0]
|
561 |
+
input_embeds = self.query_tokens.repeat(batch_size, 1, 1)
|
562 |
+
|
563 |
+
attention_mask = torch.ones(input_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
564 |
+
attention_mask = _expand_mask(attention_mask, input_embeds.dtype).to(
|
565 |
+
input_embeds.device) # [bsz, 1, tgt_seq_len, src_seq_len]
|
566 |
+
if type(self.qllama.model) == LlamaForCausalLM:
|
567 |
+
outputs = self.qllama.model.model.forward_train(
|
568 |
+
inputs_embeds=input_embeds,
|
569 |
+
vision_hidden_states=image_embeds,
|
570 |
+
attention_mask=attention_mask,
|
571 |
+
output_attentions=output_attentions,
|
572 |
+
output_hidden_states=output_hidden_states,
|
573 |
+
return_dict=return_dict,
|
574 |
+
).last_hidden_state
|
575 |
+
else:
|
576 |
+
outputs = self.qllama.model.forward_train(
|
577 |
+
inputs_embeds=input_embeds,
|
578 |
+
vision_hidden_states=image_embeds,
|
579 |
+
attention_mask=attention_mask,
|
580 |
+
output_attentions=output_attentions,
|
581 |
+
output_hidden_states=output_hidden_states,
|
582 |
+
return_dict=return_dict,
|
583 |
+
).last_hidden_state
|
584 |
+
return backbone_embeds, outputs
|
585 |
+
|
586 |
+
|
587 |
+
class InternVL_C(InternVLModel):
|
588 |
+
|
589 |
+
def encode_image(self, image):
|
590 |
+
vision_outputs = self.vision_model(
|
591 |
+
pixel_values=image,
|
592 |
+
output_hidden_states=False,
|
593 |
+
return_dict=True)
|
594 |
+
image_embeds = vision_outputs[0]
|
595 |
+
image_embeds = self.clip_projector(image_embeds)
|
596 |
+
return image_embeds
|
597 |
+
|
598 |
+
def encode_text(self, text):
|
599 |
+
attention_mask = text > 0
|
600 |
+
text_embeds = self.get_text_features(
|
601 |
+
input_ids=text,
|
602 |
+
attention_mask=attention_mask,
|
603 |
+
output_attentions=False,
|
604 |
+
output_hidden_states=False,
|
605 |
+
return_dict=True,
|
606 |
+
)
|
607 |
+
text_embeds = text_embeds[torch.arange(text_embeds.shape[0]), attention_mask.sum(1) - 1]
|
608 |
+
text_embeds = text_embeds @ self.text_projection
|
609 |
+
return text_embeds
|
610 |
+
|
611 |
+
def forward(self, image, text):
|
612 |
+
image_features = self.encode_image(image)
|
613 |
+
text_features = self.encode_text(text)
|
614 |
+
|
615 |
+
# normalized features
|
616 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
617 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
618 |
+
|
619 |
+
# cosine similarity as logits
|
620 |
+
logit_scale = self.logit_scale.exp()
|
621 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
622 |
+
logits_per_text = logits_per_image.t()
|
623 |
+
|
624 |
+
return logits_per_image, logits_per_text
|
625 |
+
|
626 |
+
|
627 |
+
class InternVL_G(InternVLModel):
|
628 |
+
|
629 |
+
def encode_image(self, image):
|
630 |
+
backbone_embeds, image_embeds = self.get_image_features(
|
631 |
+
pixel_values=image,
|
632 |
+
output_hidden_states=False,
|
633 |
+
return_dict=True,
|
634 |
+
)
|
635 |
+
backbone_embeds = self.clip_projector(backbone_embeds)
|
636 |
+
image_embeds = self.clip_projector2(image_embeds)
|
637 |
+
# ensemble
|
638 |
+
backbone_embeds = backbone_embeds / backbone_embeds.norm(dim=1, keepdim=True)
|
639 |
+
image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
|
640 |
+
image_embeds = image_embeds + backbone_embeds
|
641 |
+
return image_embeds
|
642 |
+
|
643 |
+
def encode_text(self, text):
|
644 |
+
attention_mask = text > 0
|
645 |
+
text_embeds = self.get_text_features(
|
646 |
+
input_ids=text,
|
647 |
+
attention_mask=attention_mask,
|
648 |
+
output_attentions=False,
|
649 |
+
output_hidden_states=False,
|
650 |
+
return_dict=True,
|
651 |
+
)
|
652 |
+
text_embeds = text_embeds[torch.arange(text_embeds.shape[0]), attention_mask.sum(1) - 1]
|
653 |
+
text_embeds = text_embeds @ self.text_projection
|
654 |
+
return text_embeds
|
655 |
+
|
656 |
+
def forward(self, image, text):
|
657 |
+
image_features = self.encode_image(image)
|
658 |
+
text_features = self.encode_text(text)
|
659 |
+
|
660 |
+
# normalized features
|
661 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
662 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
663 |
+
|
664 |
+
# cosine similarity as logits
|
665 |
+
logit_scale = self.logit_scale.exp()
|
666 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
667 |
+
logits_per_text = logits_per_image.t()
|
668 |
+
|
669 |
+
return logits_per_image, logits_per_text
|
InternVL/internvl_g/internvl/model/internvl_stage2_retrieval/modeling_qllama.py
ADDED
@@ -0,0 +1,1073 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
4 |
+
# and OPT implementations in this library. It has been modified from its
|
5 |
+
# original forms to accommodate minor architectural differences compared
|
6 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
""" PyTorch QLLaMA model."""
|
20 |
+
import math
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
from transformers import LlamaConfig
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
30 |
+
CausalLMOutputWithPast)
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import (add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward, logging,
|
34 |
+
replace_return_docstrings)
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CONFIG_FOR_DOC = 'LlamaConfig'
|
39 |
+
|
40 |
+
|
41 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
42 |
+
def _make_causal_mask(
|
43 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
Make causal mask used for bi-directional self-attention.
|
47 |
+
"""
|
48 |
+
bsz, tgt_len = input_ids_shape
|
49 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
50 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
51 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
52 |
+
mask = mask.to(dtype)
|
53 |
+
|
54 |
+
if past_key_values_length > 0:
|
55 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
56 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
60 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
61 |
+
"""
|
62 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
63 |
+
"""
|
64 |
+
bsz, src_len = mask.size()
|
65 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
66 |
+
|
67 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
68 |
+
|
69 |
+
inverted_mask = 1.0 - expanded_mask
|
70 |
+
|
71 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
72 |
+
|
73 |
+
|
74 |
+
class LlamaRMSNorm(nn.Module):
|
75 |
+
def __init__(self, hidden_size, eps=1e-6):
|
76 |
+
"""
|
77 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
78 |
+
"""
|
79 |
+
super().__init__()
|
80 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
81 |
+
self.variance_epsilon = eps
|
82 |
+
|
83 |
+
def forward(self, hidden_states):
|
84 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
85 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
86 |
+
|
87 |
+
# convert into half-precision if necessary
|
88 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
89 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
90 |
+
|
91 |
+
return self.weight * hidden_states
|
92 |
+
|
93 |
+
|
94 |
+
try:
|
95 |
+
from functools import partial
|
96 |
+
|
97 |
+
from apex.normalization import FusedRMSNorm
|
98 |
+
|
99 |
+
LlamaRMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
100 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of LlamaRMSNorm')
|
101 |
+
except ImportError:
|
102 |
+
# using the normal LlamaRMSNorm
|
103 |
+
pass
|
104 |
+
except Exception:
|
105 |
+
print('discovered apex but it failed to load, falling back to LlamaRMSNorm')
|
106 |
+
pass
|
107 |
+
|
108 |
+
|
109 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
111 |
+
super().__init__()
|
112 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
113 |
+
self.register_buffer('inv_freq', inv_freq)
|
114 |
+
|
115 |
+
# Build here to make `torch.jit.trace` work.
|
116 |
+
self.max_seq_len_cached = max_position_embeddings
|
117 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
118 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
119 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
120 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
121 |
+
self.register_buffer('cos_cached', emb.cos()[None, None, :, :], persistent=False)
|
122 |
+
self.register_buffer('sin_cached', emb.sin()[None, None, :, :], persistent=False)
|
123 |
+
|
124 |
+
def forward(self, x, seq_len=None):
|
125 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
126 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
127 |
+
if seq_len > self.max_seq_len_cached:
|
128 |
+
self.max_seq_len_cached = seq_len
|
129 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
130 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
131 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
132 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
133 |
+
self.register_buffer('cos_cached', emb.cos()[None, None, :, :], persistent=False)
|
134 |
+
self.register_buffer('sin_cached', emb.sin()[None, None, :, :], persistent=False)
|
135 |
+
return (
|
136 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
137 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
class FixedLlamaRotaryEmbedding(torch.nn.Module):
|
142 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.dim = dim
|
146 |
+
self.max_position_embeddings = max_position_embeddings
|
147 |
+
self.base = base
|
148 |
+
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
149 |
+
|
150 |
+
# Build here to make `torch.jit.trace` work.
|
151 |
+
self._set_cos_sin_cache(
|
152 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
153 |
+
)
|
154 |
+
|
155 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
+
self.max_seq_len_cached = seq_len
|
157 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
158 |
+
|
159 |
+
freqs = torch.outer(t, self.inv_freq)
|
160 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
161 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
162 |
+
self.register_buffer('cos_cached', emb.cos()[None, None, :, :], persistent=False)
|
163 |
+
self.register_buffer('sin_cached', emb.sin()[None, None, :, :], persistent=False)
|
164 |
+
|
165 |
+
def forward(self, x, seq_len=None):
|
166 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
167 |
+
if seq_len > self.max_seq_len_cached:
|
168 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
169 |
+
|
170 |
+
return (
|
171 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
172 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
LlamaRotaryEmbedding = FixedLlamaRotaryEmbedding
|
177 |
+
|
178 |
+
|
179 |
+
def rotate_half(x):
|
180 |
+
"""Rotates half the hidden dims of the input."""
|
181 |
+
x1 = x[..., : x.shape[-1] // 2]
|
182 |
+
x2 = x[..., x.shape[-1] // 2:]
|
183 |
+
return torch.cat((-x2, x1), dim=-1)
|
184 |
+
|
185 |
+
|
186 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
187 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
188 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
189 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
190 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
191 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
192 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
193 |
+
return q_embed, k_embed
|
194 |
+
|
195 |
+
|
196 |
+
class LlamaMLP(nn.Module):
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
hidden_size: int,
|
200 |
+
intermediate_size: int,
|
201 |
+
hidden_act: str,
|
202 |
+
):
|
203 |
+
super().__init__()
|
204 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
205 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
206 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
207 |
+
self.act_fn = ACT2FN[hidden_act]
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
211 |
+
|
212 |
+
|
213 |
+
class LlamaAttention(nn.Module):
|
214 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
215 |
+
|
216 |
+
def __init__(self, config: LlamaConfig):
|
217 |
+
super().__init__()
|
218 |
+
self.config = config
|
219 |
+
self.hidden_size = config.hidden_size
|
220 |
+
self.num_heads = config.num_attention_heads
|
221 |
+
self.head_dim = self.hidden_size // self.num_heads
|
222 |
+
self.max_position_embeddings = config.max_position_embeddings
|
223 |
+
|
224 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
225 |
+
raise ValueError(
|
226 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
227 |
+
f' and `num_heads`: {self.num_heads}).'
|
228 |
+
)
|
229 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
230 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
231 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
232 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
233 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
234 |
+
|
235 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
236 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
237 |
+
|
238 |
+
def forward(
|
239 |
+
self,
|
240 |
+
hidden_states: torch.Tensor,
|
241 |
+
attention_mask: Optional[torch.Tensor] = None,
|
242 |
+
position_ids: Optional[torch.LongTensor] = None,
|
243 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
244 |
+
output_attentions: bool = False,
|
245 |
+
use_cache: bool = False,
|
246 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
247 |
+
bsz, q_len, _ = hidden_states.size()
|
248 |
+
|
249 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
250 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
251 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
252 |
+
|
253 |
+
kv_seq_len = key_states.shape[-2]
|
254 |
+
if past_key_value is not None:
|
255 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
256 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
257 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
258 |
+
# [bsz, nh, t, hd]
|
259 |
+
|
260 |
+
if past_key_value is not None:
|
261 |
+
# reuse k, v, self_attention
|
262 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
263 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
264 |
+
|
265 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
266 |
+
|
267 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
268 |
+
|
269 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
270 |
+
raise ValueError(
|
271 |
+
f'Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is'
|
272 |
+
f' {attn_weights.size()}'
|
273 |
+
)
|
274 |
+
|
275 |
+
if attention_mask is not None:
|
276 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
277 |
+
raise ValueError(
|
278 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
279 |
+
)
|
280 |
+
attn_weights = attn_weights + attention_mask
|
281 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
282 |
+
|
283 |
+
# upcast attention to fp32
|
284 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
285 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
286 |
+
|
287 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
288 |
+
raise ValueError(
|
289 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
290 |
+
f' {attn_output.size()}'
|
291 |
+
)
|
292 |
+
|
293 |
+
attn_output = attn_output.transpose(1, 2)
|
294 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
295 |
+
|
296 |
+
attn_output = self.o_proj(attn_output)
|
297 |
+
|
298 |
+
if not output_attentions:
|
299 |
+
attn_weights = None
|
300 |
+
|
301 |
+
return attn_output, attn_weights, past_key_value
|
302 |
+
|
303 |
+
|
304 |
+
class LlamaCrossAttention(nn.Module):
|
305 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
306 |
+
|
307 |
+
def __init__(self, config: LlamaConfig):
|
308 |
+
super().__init__()
|
309 |
+
self.config = config
|
310 |
+
self.hidden_size = config.hidden_size
|
311 |
+
self.num_heads = config.num_attention_heads
|
312 |
+
self.head_dim = self.hidden_size // self.num_heads
|
313 |
+
self.max_position_embeddings = config.max_position_embeddings
|
314 |
+
self.vision_hidden_size = 3200
|
315 |
+
|
316 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
317 |
+
raise ValueError(
|
318 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
319 |
+
f' and `num_heads`: {self.num_heads}).'
|
320 |
+
)
|
321 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
322 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
323 |
+
self.norm1 = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
324 |
+
|
325 |
+
self.k_proj = nn.Linear(self.vision_hidden_size, self.num_heads * self.head_dim, bias=False)
|
326 |
+
self.v_proj = nn.Linear(self.vision_hidden_size, self.num_heads * self.head_dim, bias=False)
|
327 |
+
self.norm2 = LlamaRMSNorm(self.vision_hidden_size, eps=config.rms_norm_eps)
|
328 |
+
|
329 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
330 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
hidden_states: torch.Tensor,
|
335 |
+
vision_hidden_states: torch.Tensor,
|
336 |
+
repeat_time: int = 1,
|
337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
338 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
339 |
+
output_attentions: bool = False,
|
340 |
+
use_cache: bool = False,
|
341 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
342 |
+
hidden_states = self.norm1(hidden_states)
|
343 |
+
|
344 |
+
bsz, q_len, _ = hidden_states.size()
|
345 |
+
|
346 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
347 |
+
|
348 |
+
vision_hidden_states = self.norm2(vision_hidden_states)
|
349 |
+
|
350 |
+
bs_v, kv_len, _ = vision_hidden_states.size()
|
351 |
+
|
352 |
+
key_states = self.k_proj(vision_hidden_states).view(
|
353 |
+
bs_v, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
|
354 |
+
value_states = self.v_proj(vision_hidden_states).view(
|
355 |
+
bs_v, kv_len, self.num_heads, self.head_dim).transpose(1, 2)
|
356 |
+
|
357 |
+
key_states = key_states.repeat(repeat_time, 1, 1, 1)
|
358 |
+
value_states = value_states.repeat(repeat_time, 1, 1, 1)
|
359 |
+
|
360 |
+
kv_seq_len = key_states.shape[-2]
|
361 |
+
if past_key_value is not None:
|
362 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
363 |
+
|
364 |
+
if past_key_value is not None:
|
365 |
+
# reuse k, v, self_attention
|
366 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
367 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
368 |
+
|
369 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
370 |
+
|
371 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
372 |
+
|
373 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
374 |
+
raise ValueError(
|
375 |
+
f'Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is'
|
376 |
+
f' {attn_weights.size()}'
|
377 |
+
)
|
378 |
+
|
379 |
+
if attention_mask is not None:
|
380 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
381 |
+
raise ValueError(
|
382 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
383 |
+
)
|
384 |
+
attn_weights = attn_weights + attention_mask
|
385 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
386 |
+
|
387 |
+
# upcast attention to fp32
|
388 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
389 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
390 |
+
|
391 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
392 |
+
raise ValueError(
|
393 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
394 |
+
f' {attn_output.size()}'
|
395 |
+
)
|
396 |
+
|
397 |
+
attn_output = attn_output.transpose(1, 2)
|
398 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
399 |
+
|
400 |
+
attn_output = self.o_proj(attn_output)
|
401 |
+
|
402 |
+
if not output_attentions:
|
403 |
+
attn_weights = None
|
404 |
+
|
405 |
+
return attn_output, attn_weights, past_key_value
|
406 |
+
|
407 |
+
|
408 |
+
class LlamaDecoderLayer(nn.Module):
|
409 |
+
def __init__(self, config: LlamaConfig, use_cross_attn: bool):
|
410 |
+
super().__init__()
|
411 |
+
self.hidden_size = config.hidden_size
|
412 |
+
self.self_attn = LlamaAttention(config=config)
|
413 |
+
self.cross_attn = LlamaCrossAttention(config=config) if use_cross_attn else None
|
414 |
+
self.mlp = LlamaMLP(
|
415 |
+
hidden_size=self.hidden_size,
|
416 |
+
intermediate_size=config.intermediate_size,
|
417 |
+
hidden_act=config.hidden_act,
|
418 |
+
)
|
419 |
+
self.num_query_token = 96
|
420 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
421 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
422 |
+
|
423 |
+
def forward(
|
424 |
+
self,
|
425 |
+
hidden_states: torch.Tensor,
|
426 |
+
vision_hidden_states: torch.Tensor,
|
427 |
+
attention_mask: Optional[torch.Tensor] = None,
|
428 |
+
position_ids: Optional[torch.LongTensor] = None,
|
429 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
430 |
+
output_attentions: Optional[bool] = False,
|
431 |
+
use_cache: Optional[bool] = False,
|
432 |
+
repeat_time: int = 1,
|
433 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
434 |
+
"""
|
435 |
+
Args:
|
436 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
437 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
438 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
439 |
+
output_attentions (`bool`, *optional*):
|
440 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
441 |
+
returned tensors for more detail.
|
442 |
+
use_cache (`bool`, *optional*):
|
443 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
444 |
+
(see `past_key_values`).
|
445 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
446 |
+
"""
|
447 |
+
|
448 |
+
residual = hidden_states
|
449 |
+
|
450 |
+
hidden_states = self.input_layernorm(hidden_states)
|
451 |
+
|
452 |
+
# Self Attention
|
453 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
454 |
+
hidden_states=hidden_states,
|
455 |
+
attention_mask=attention_mask,
|
456 |
+
position_ids=position_ids,
|
457 |
+
past_key_value=past_key_value,
|
458 |
+
output_attentions=output_attentions,
|
459 |
+
use_cache=use_cache,
|
460 |
+
)
|
461 |
+
hidden_states = residual + hidden_states
|
462 |
+
|
463 |
+
# when using generate function and cache mode, the size of hidden_states is 1,
|
464 |
+
# so we should not use cross attention
|
465 |
+
if self.cross_attn is not None and hidden_states.size(1) >= self.num_query_token \
|
466 |
+
and vision_hidden_states is not None:
|
467 |
+
query_feats = hidden_states[:, :self.num_query_token, :]
|
468 |
+
text_feats = hidden_states[:, self.num_query_token:, :]
|
469 |
+
residual = query_feats
|
470 |
+
query_feats, _, _ = self.cross_attn(
|
471 |
+
hidden_states=query_feats,
|
472 |
+
vision_hidden_states=vision_hidden_states,
|
473 |
+
attention_mask=None, # not use attention mask in cross attention
|
474 |
+
past_key_value=past_key_value,
|
475 |
+
output_attentions=output_attentions,
|
476 |
+
use_cache=use_cache,
|
477 |
+
repeat_time=repeat_time,
|
478 |
+
)
|
479 |
+
query_feats = residual + query_feats
|
480 |
+
hidden_states = torch.cat([query_feats, text_feats], dim=1)
|
481 |
+
|
482 |
+
# Fully Connected
|
483 |
+
residual = hidden_states
|
484 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
485 |
+
hidden_states = self.mlp(hidden_states)
|
486 |
+
hidden_states = residual + hidden_states
|
487 |
+
|
488 |
+
outputs = (hidden_states,)
|
489 |
+
|
490 |
+
if output_attentions:
|
491 |
+
outputs += (self_attn_weights,)
|
492 |
+
|
493 |
+
if use_cache:
|
494 |
+
outputs += (present_key_value,)
|
495 |
+
|
496 |
+
return outputs
|
497 |
+
|
498 |
+
|
499 |
+
LLAMA_START_DOCSTRING = r"""
|
500 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
501 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
502 |
+
etc.)
|
503 |
+
|
504 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
505 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
506 |
+
and behavior.
|
507 |
+
|
508 |
+
Parameters:
|
509 |
+
config ([`LlamaConfig`]):
|
510 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
511 |
+
load the weights associated with the model, only the configuration. Check out the
|
512 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
513 |
+
"""
|
514 |
+
|
515 |
+
|
516 |
+
@add_start_docstrings(
|
517 |
+
'The bare LLaMA Model outputting raw hidden-states without any specific head on top.',
|
518 |
+
LLAMA_START_DOCSTRING,
|
519 |
+
)
|
520 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
521 |
+
config_class = LlamaConfig
|
522 |
+
base_model_prefix = 'model'
|
523 |
+
supports_gradient_checkpointing = True
|
524 |
+
_no_split_modules = ['LlamaDecoderLayer']
|
525 |
+
_keys_to_ignore_on_load_unexpected = [r'decoder\.version']
|
526 |
+
|
527 |
+
def _init_weights(self, module):
|
528 |
+
std = self.config.initializer_range
|
529 |
+
if isinstance(module, nn.Linear):
|
530 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
531 |
+
if module.bias is not None:
|
532 |
+
module.bias.data.zero_()
|
533 |
+
elif isinstance(module, nn.Embedding):
|
534 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
535 |
+
if module.padding_idx is not None:
|
536 |
+
module.weight.data[module.padding_idx].zero_()
|
537 |
+
|
538 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
539 |
+
if isinstance(module, LlamaModel):
|
540 |
+
module.gradient_checkpointing = value
|
541 |
+
if isinstance(module, LlamaDecoderLayer):
|
542 |
+
module.gradient_checkpointing = value
|
543 |
+
|
544 |
+
|
545 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
546 |
+
Args:
|
547 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
548 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
549 |
+
it.
|
550 |
+
|
551 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
552 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
553 |
+
|
554 |
+
[What are input IDs?](../glossary#input-ids)
|
555 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
556 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
557 |
+
|
558 |
+
- 1 for tokens that are **not masked**,
|
559 |
+
- 0 for tokens that are **masked**.
|
560 |
+
|
561 |
+
[What are attention masks?](../glossary#attention-mask)
|
562 |
+
|
563 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
564 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
565 |
+
|
566 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
567 |
+
`past_key_values`).
|
568 |
+
|
569 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
570 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
571 |
+
information on the default strategy.
|
572 |
+
|
573 |
+
- 1 indicates the head is **not masked**,
|
574 |
+
- 0 indicates the head is **masked**.
|
575 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
576 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
577 |
+
config.n_positions - 1]`.
|
578 |
+
|
579 |
+
[What are position IDs?](../glossary#position-ids)
|
580 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
581 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
582 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
583 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
584 |
+
|
585 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
586 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
587 |
+
|
588 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
589 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
590 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
591 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
592 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
593 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
594 |
+
model's internal embedding lookup matrix.
|
595 |
+
use_cache (`bool`, *optional*):
|
596 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
597 |
+
`past_key_values`).
|
598 |
+
output_attentions (`bool`, *optional*):
|
599 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
600 |
+
tensors for more detail.
|
601 |
+
output_hidden_states (`bool`, *optional*):
|
602 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
603 |
+
more detail.
|
604 |
+
return_dict (`bool`, *optional*):
|
605 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
606 |
+
"""
|
607 |
+
|
608 |
+
|
609 |
+
@add_start_docstrings(
|
610 |
+
'The bare LLaMA Model outputting raw hidden-states without any specific head on top.',
|
611 |
+
LLAMA_START_DOCSTRING,
|
612 |
+
)
|
613 |
+
class LlamaModel(LlamaPreTrainedModel):
|
614 |
+
"""
|
615 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
616 |
+
|
617 |
+
Args:
|
618 |
+
config: LlamaConfig
|
619 |
+
"""
|
620 |
+
|
621 |
+
def __init__(self, config: LlamaConfig):
|
622 |
+
super().__init__(config)
|
623 |
+
self.padding_idx = config.pad_token_id
|
624 |
+
self.vocab_size = config.vocab_size
|
625 |
+
self.cross_attention_frequency = config.cross_attention_frequency
|
626 |
+
self.num_query_token = config.num_query_token
|
627 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
628 |
+
use_cross_attn = [idx % self.cross_attention_frequency == 0 for idx in range(config.num_hidden_layers)]
|
629 |
+
self.layers = nn.ModuleList(
|
630 |
+
[LlamaDecoderLayer(config, use_cross_attn[idx]) for idx in range(config.num_hidden_layers)])
|
631 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
632 |
+
self.gradient_checkpointing = False
|
633 |
+
# Initialize weights and apply final processing
|
634 |
+
# self.post_init()
|
635 |
+
|
636 |
+
def get_input_embeddings(self):
|
637 |
+
return self.embed_tokens
|
638 |
+
|
639 |
+
def set_input_embeddings(self, value):
|
640 |
+
self.embed_tokens = value
|
641 |
+
|
642 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
643 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
644 |
+
# create causal mask
|
645 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
646 |
+
combined_attention_mask = None
|
647 |
+
if input_shape[-1] > 1:
|
648 |
+
combined_attention_mask = _make_causal_mask(
|
649 |
+
input_shape,
|
650 |
+
inputs_embeds.dtype,
|
651 |
+
device=inputs_embeds.device,
|
652 |
+
past_key_values_length=past_key_values_length,
|
653 |
+
)
|
654 |
+
|
655 |
+
if attention_mask is not None:
|
656 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
657 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
658 |
+
inputs_embeds.device
|
659 |
+
)
|
660 |
+
combined_attention_mask = (
|
661 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
662 |
+
)
|
663 |
+
|
664 |
+
return combined_attention_mask
|
665 |
+
|
666 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
667 |
+
def forward(
|
668 |
+
self,
|
669 |
+
input_ids: torch.LongTensor = None,
|
670 |
+
attention_mask: Optional[torch.Tensor] = None,
|
671 |
+
position_ids: Optional[torch.LongTensor] = None,
|
672 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
673 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
674 |
+
vision_hidden_states: Optional[torch.FloatTensor] = None,
|
675 |
+
repeat_time: Optional[int] = 1,
|
676 |
+
use_cache: Optional[bool] = None,
|
677 |
+
output_attentions: Optional[bool] = None,
|
678 |
+
output_hidden_states: Optional[bool] = None,
|
679 |
+
use_zero_attention_mask: Optional[bool] = None,
|
680 |
+
return_dict: Optional[bool] = None,
|
681 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
682 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
683 |
+
output_hidden_states = (
|
684 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
685 |
+
)
|
686 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
687 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
688 |
+
|
689 |
+
# retrieve input_ids and inputs_embeds
|
690 |
+
if input_ids is not None and inputs_embeds is not None:
|
691 |
+
raise ValueError('You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time')
|
692 |
+
elif input_ids is not None:
|
693 |
+
batch_size, seq_length = input_ids.shape
|
694 |
+
elif inputs_embeds is not None:
|
695 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
696 |
+
else:
|
697 |
+
raise ValueError('You have to specify either decoder_input_ids or decoder_inputs_embeds')
|
698 |
+
seq_length_with_past = seq_length
|
699 |
+
past_key_values_length = 0
|
700 |
+
|
701 |
+
if past_key_values is not None:
|
702 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
703 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
704 |
+
|
705 |
+
if position_ids is None:
|
706 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
707 |
+
position_ids = torch.arange(
|
708 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
709 |
+
)
|
710 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
711 |
+
else:
|
712 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
713 |
+
|
714 |
+
if inputs_embeds is None:
|
715 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
716 |
+
# embed positions
|
717 |
+
if attention_mask is None:
|
718 |
+
attention_mask = torch.ones(
|
719 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
720 |
+
)
|
721 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
722 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
723 |
+
)
|
724 |
+
if use_zero_attention_mask:
|
725 |
+
attention_mask[:, :, :self.num_query_token, :self.num_query_token] = 0
|
726 |
+
|
727 |
+
hidden_states = inputs_embeds
|
728 |
+
|
729 |
+
if self.gradient_checkpointing and self.training:
|
730 |
+
if use_cache:
|
731 |
+
logger.warning_once(
|
732 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
733 |
+
)
|
734 |
+
use_cache = False
|
735 |
+
|
736 |
+
# decoder layers
|
737 |
+
all_hidden_states = () if output_hidden_states else None
|
738 |
+
all_self_attns = () if output_attentions else None
|
739 |
+
next_decoder_cache = () if use_cache else None
|
740 |
+
|
741 |
+
for idx, decoder_layer in enumerate(self.layers):
|
742 |
+
if output_hidden_states:
|
743 |
+
all_hidden_states += (hidden_states,)
|
744 |
+
|
745 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
746 |
+
|
747 |
+
layer_outputs = decoder_layer(
|
748 |
+
hidden_states,
|
749 |
+
vision_hidden_states,
|
750 |
+
attention_mask=attention_mask,
|
751 |
+
position_ids=position_ids,
|
752 |
+
past_key_value=past_key_value,
|
753 |
+
output_attentions=output_attentions,
|
754 |
+
use_cache=use_cache,
|
755 |
+
repeat_time=repeat_time,
|
756 |
+
)
|
757 |
+
|
758 |
+
hidden_states = layer_outputs[0]
|
759 |
+
|
760 |
+
if use_cache:
|
761 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
762 |
+
|
763 |
+
if output_attentions:
|
764 |
+
all_self_attns += (layer_outputs[1],)
|
765 |
+
|
766 |
+
hidden_states = self.norm(hidden_states)
|
767 |
+
|
768 |
+
# add hidden states from the last decoder layer
|
769 |
+
if output_hidden_states:
|
770 |
+
all_hidden_states += (hidden_states,)
|
771 |
+
|
772 |
+
next_cache = next_decoder_cache if use_cache else None
|
773 |
+
if not return_dict:
|
774 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
775 |
+
return BaseModelOutputWithPast(
|
776 |
+
last_hidden_state=hidden_states,
|
777 |
+
past_key_values=next_cache,
|
778 |
+
hidden_states=all_hidden_states,
|
779 |
+
attentions=all_self_attns,
|
780 |
+
)
|
781 |
+
|
782 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
783 |
+
def forward_train(
|
784 |
+
self,
|
785 |
+
input_ids: torch.LongTensor = None,
|
786 |
+
attention_mask: Optional[torch.Tensor] = None,
|
787 |
+
position_ids: Optional[torch.LongTensor] = None,
|
788 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
789 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
790 |
+
vision_hidden_states: Optional[torch.FloatTensor] = None,
|
791 |
+
repeat_time: Optional[int] = 1,
|
792 |
+
use_cache: Optional[bool] = None,
|
793 |
+
output_attentions: Optional[bool] = None,
|
794 |
+
output_hidden_states: Optional[bool] = None,
|
795 |
+
return_dict: Optional[bool] = None,
|
796 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
797 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
798 |
+
output_hidden_states = (
|
799 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
800 |
+
)
|
801 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
802 |
+
|
803 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
804 |
+
|
805 |
+
# retrieve input_ids and inputs_embeds
|
806 |
+
if input_ids is not None and inputs_embeds is not None:
|
807 |
+
raise ValueError('You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time')
|
808 |
+
elif input_ids is not None:
|
809 |
+
batch_size, seq_length = input_ids.shape
|
810 |
+
elif inputs_embeds is not None:
|
811 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
812 |
+
else:
|
813 |
+
raise ValueError('You have to specify either decoder_input_ids or decoder_inputs_embeds')
|
814 |
+
|
815 |
+
seq_length_with_past = seq_length
|
816 |
+
past_key_values_length = 0
|
817 |
+
|
818 |
+
if past_key_values is not None:
|
819 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
820 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
821 |
+
|
822 |
+
if position_ids is None:
|
823 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
824 |
+
position_ids = torch.arange(
|
825 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
826 |
+
)
|
827 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
828 |
+
else:
|
829 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
830 |
+
|
831 |
+
if inputs_embeds is None:
|
832 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
833 |
+
# embed positions
|
834 |
+
# if attention_mask is None:
|
835 |
+
# attention_mask = torch.ones(
|
836 |
+
# (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
837 |
+
# )
|
838 |
+
# attention_mask = self._prepare_decoder_attention_mask(
|
839 |
+
# attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
840 |
+
# )
|
841 |
+
hidden_states = inputs_embeds
|
842 |
+
|
843 |
+
if self.gradient_checkpointing and self.training:
|
844 |
+
if use_cache:
|
845 |
+
logger.warning_once(
|
846 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
847 |
+
)
|
848 |
+
use_cache = False
|
849 |
+
|
850 |
+
# decoder layers
|
851 |
+
all_hidden_states = () if output_hidden_states else None
|
852 |
+
all_self_attns = () if output_attentions else None
|
853 |
+
next_decoder_cache = () if use_cache else None
|
854 |
+
|
855 |
+
for idx, decoder_layer in enumerate(self.layers):
|
856 |
+
if output_hidden_states:
|
857 |
+
all_hidden_states += (hidden_states,)
|
858 |
+
|
859 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
860 |
+
|
861 |
+
if self.gradient_checkpointing and self.training:
|
862 |
+
|
863 |
+
def create_custom_forward(module):
|
864 |
+
def custom_forward(*inputs):
|
865 |
+
# None for past_key_value
|
866 |
+
return module(*inputs, output_attentions, None, repeat_time)
|
867 |
+
|
868 |
+
return custom_forward
|
869 |
+
|
870 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
871 |
+
create_custom_forward(decoder_layer),
|
872 |
+
hidden_states,
|
873 |
+
vision_hidden_states,
|
874 |
+
attention_mask,
|
875 |
+
position_ids,
|
876 |
+
None,
|
877 |
+
)
|
878 |
+
else:
|
879 |
+
layer_outputs = decoder_layer(
|
880 |
+
hidden_states,
|
881 |
+
vision_hidden_states,
|
882 |
+
attention_mask=attention_mask,
|
883 |
+
position_ids=position_ids,
|
884 |
+
past_key_value=past_key_value,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
use_cache=use_cache,
|
887 |
+
repeat_time=repeat_time,
|
888 |
+
)
|
889 |
+
|
890 |
+
hidden_states = layer_outputs[0]
|
891 |
+
|
892 |
+
if use_cache:
|
893 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
894 |
+
|
895 |
+
if output_attentions:
|
896 |
+
all_self_attns += (layer_outputs[1],)
|
897 |
+
|
898 |
+
hidden_states = self.norm(hidden_states)
|
899 |
+
|
900 |
+
# add hidden states from the last decoder layer
|
901 |
+
if output_hidden_states:
|
902 |
+
all_hidden_states += (hidden_states,)
|
903 |
+
|
904 |
+
next_cache = next_decoder_cache if use_cache else None
|
905 |
+
if not return_dict:
|
906 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
907 |
+
return BaseModelOutputWithPast(
|
908 |
+
last_hidden_state=hidden_states,
|
909 |
+
past_key_values=next_cache,
|
910 |
+
hidden_states=all_hidden_states,
|
911 |
+
attentions=all_self_attns,
|
912 |
+
)
|
913 |
+
|
914 |
+
|
915 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
916 |
+
def __init__(self, config):
|
917 |
+
super().__init__(config)
|
918 |
+
self.model = LlamaModel(config)
|
919 |
+
|
920 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
921 |
+
|
922 |
+
# Initialize weights and apply final processing
|
923 |
+
# self.post_init()
|
924 |
+
|
925 |
+
def get_input_embeddings(self):
|
926 |
+
return self.model.embed_tokens
|
927 |
+
|
928 |
+
def set_input_embeddings(self, value):
|
929 |
+
self.model.embed_tokens = value
|
930 |
+
|
931 |
+
def get_output_embeddings(self):
|
932 |
+
return self.lm_head
|
933 |
+
|
934 |
+
def set_output_embeddings(self, new_embeddings):
|
935 |
+
self.lm_head = new_embeddings
|
936 |
+
|
937 |
+
def set_decoder(self, decoder):
|
938 |
+
self.model = decoder
|
939 |
+
|
940 |
+
def get_decoder(self):
|
941 |
+
return self.model
|
942 |
+
|
943 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
944 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
945 |
+
def forward(
|
946 |
+
self,
|
947 |
+
input_ids: torch.LongTensor = None,
|
948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
949 |
+
position_ids: Optional[torch.LongTensor] = None,
|
950 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
951 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
952 |
+
vision_hidden_states: Optional[torch.FloatTensor] = None,
|
953 |
+
labels: Optional[torch.LongTensor] = None,
|
954 |
+
use_cache: Optional[bool] = None,
|
955 |
+
output_attentions: Optional[bool] = None,
|
956 |
+
output_hidden_states: Optional[bool] = None,
|
957 |
+
use_zero_attention_mask: Optional[bool] = None,
|
958 |
+
return_dict: Optional[bool] = None,
|
959 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
960 |
+
r"""
|
961 |
+
Args:
|
962 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
963 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
964 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
965 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
966 |
+
|
967 |
+
Returns:
|
968 |
+
|
969 |
+
Example:
|
970 |
+
|
971 |
+
```python
|
972 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
973 |
+
|
974 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
975 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
976 |
+
|
977 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
978 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
979 |
+
|
980 |
+
>>> # Generate
|
981 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
982 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
983 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
984 |
+
```"""
|
985 |
+
|
986 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
987 |
+
output_hidden_states = (
|
988 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
989 |
+
)
|
990 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
991 |
+
|
992 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
993 |
+
outputs = self.model(
|
994 |
+
input_ids=input_ids,
|
995 |
+
attention_mask=attention_mask,
|
996 |
+
position_ids=position_ids,
|
997 |
+
past_key_values=past_key_values,
|
998 |
+
inputs_embeds=inputs_embeds,
|
999 |
+
vision_hidden_states=vision_hidden_states,
|
1000 |
+
use_cache=use_cache,
|
1001 |
+
output_attentions=output_attentions,
|
1002 |
+
output_hidden_states=output_hidden_states,
|
1003 |
+
return_dict=return_dict,
|
1004 |
+
use_zero_attention_mask=use_zero_attention_mask,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
hidden_states = outputs[0]
|
1008 |
+
logits = self.lm_head(hidden_states)
|
1009 |
+
|
1010 |
+
loss = None
|
1011 |
+
if labels is not None:
|
1012 |
+
# Shift so that tokens < n predict n
|
1013 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1014 |
+
shift_labels = labels[..., 1:].contiguous()
|
1015 |
+
# Flatten the tokens
|
1016 |
+
loss_fct = CrossEntropyLoss()
|
1017 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1018 |
+
shift_labels = shift_labels.view(-1)
|
1019 |
+
# Enable model parallelism
|
1020 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1021 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1022 |
+
|
1023 |
+
if not return_dict:
|
1024 |
+
output = (logits,) + outputs[1:]
|
1025 |
+
return (loss,) + output if loss is not None else output
|
1026 |
+
|
1027 |
+
return CausalLMOutputWithPast(
|
1028 |
+
loss=loss,
|
1029 |
+
logits=logits,
|
1030 |
+
past_key_values=outputs.past_key_values,
|
1031 |
+
hidden_states=outputs.hidden_states,
|
1032 |
+
attentions=outputs.attentions,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
def prepare_inputs_for_generation(
|
1036 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None,
|
1037 |
+
vision_hidden_states=None, use_zero_attention_mask=None, **kwargs
|
1038 |
+
):
|
1039 |
+
if past_key_values:
|
1040 |
+
input_ids = input_ids[:, -1:]
|
1041 |
+
|
1042 |
+
position_ids = kwargs.get('position_ids', None)
|
1043 |
+
if attention_mask is not None and position_ids is None:
|
1044 |
+
# create position_ids on the fly for batch generation
|
1045 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1046 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1047 |
+
if past_key_values:
|
1048 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1049 |
+
|
1050 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1051 |
+
if inputs_embeds is not None and past_key_values is None:
|
1052 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1053 |
+
else:
|
1054 |
+
model_inputs = {'input_ids': input_ids}
|
1055 |
+
|
1056 |
+
model_inputs.update(
|
1057 |
+
{
|
1058 |
+
'position_ids': position_ids,
|
1059 |
+
'past_key_values': past_key_values,
|
1060 |
+
'use_cache': kwargs.get('use_cache'),
|
1061 |
+
'attention_mask': attention_mask,
|
1062 |
+
'vision_hidden_states': vision_hidden_states,
|
1063 |
+
'use_zero_attention_mask': use_zero_attention_mask,
|
1064 |
+
}
|
1065 |
+
)
|
1066 |
+
return model_inputs
|
1067 |
+
|
1068 |
+
@staticmethod
|
1069 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1070 |
+
reordered_past = ()
|
1071 |
+
for layer_past in past_key_values:
|
1072 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1073 |
+
return reordered_past
|
InternVL/internvl_g/internvl/train/__init__.py
ADDED
File without changes
|
InternVL/internvl_g/internvl/train/dataset.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from PIL import Image
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from torchvision.transforms.functional import InterpolationMode
|
11 |
+
|
12 |
+
|
13 |
+
def build_transform(input_size):
|
14 |
+
# match fine-tune setting with blip2
|
15 |
+
# https://github.com/salesforce/LAVIS/blob/main/lavis/processors/blip_processors.py
|
16 |
+
transform = T.Compose([
|
17 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
18 |
+
T.RandomResizedCrop(input_size, scale=(0.5, 1.0),
|
19 |
+
interpolation=InterpolationMode.BICUBIC),
|
20 |
+
T.RandomHorizontalFlip(),
|
21 |
+
T.ToTensor(),
|
22 |
+
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
23 |
+
])
|
24 |
+
return transform
|
25 |
+
|
26 |
+
|
27 |
+
class FlickrDataset(Dataset):
|
28 |
+
"""Dataset for supervised fine-tuning."""
|
29 |
+
|
30 |
+
def __init__(self, metas, tokenizer, data_args):
|
31 |
+
super(FlickrDataset, self).__init__()
|
32 |
+
|
33 |
+
f = open(metas['annotation'])
|
34 |
+
lines = f.readlines()[1:]
|
35 |
+
|
36 |
+
self.data_args = data_args
|
37 |
+
self.tokenizer = tokenizer
|
38 |
+
self.images = []
|
39 |
+
self.image_ids = []
|
40 |
+
self.captions = []
|
41 |
+
|
42 |
+
for line in lines:
|
43 |
+
image, caption = line.strip().split('.jpg,')
|
44 |
+
image_id = int(image)
|
45 |
+
caption = self.process_single_caption(caption)
|
46 |
+
image = image + '.jpg'
|
47 |
+
image_path = metas['root'] + '/' + image
|
48 |
+
self.images.append(image_path)
|
49 |
+
self.image_ids.append(image_id)
|
50 |
+
self.captions.append(caption)
|
51 |
+
print(f'There are {len(self.images)} images.')
|
52 |
+
print(f'There are {len(self.captions)} captions.')
|
53 |
+
|
54 |
+
def __len__(self):
|
55 |
+
return len(self.images)
|
56 |
+
|
57 |
+
def process_single_caption(self, caption, max_words=50):
|
58 |
+
caption = re.sub(r"([.!\"()*#:;~])", ' ', caption.lower())
|
59 |
+
caption = re.sub(r'\s{2,}', ' ', caption)
|
60 |
+
caption = caption.rstrip('\n')
|
61 |
+
caption = caption.strip(' ')
|
62 |
+
|
63 |
+
# truncate caption
|
64 |
+
caption_words = caption.split(' ')
|
65 |
+
if len(caption_words) > max_words:
|
66 |
+
caption = ' '.join(caption_words[: max_words])
|
67 |
+
return caption
|
68 |
+
|
69 |
+
def preprocess(self, image, caption, neg_caption):
|
70 |
+
model_inputs = dict()
|
71 |
+
|
72 |
+
# input image
|
73 |
+
image_transform = build_transform(input_size=self.data_args.force_image_size)
|
74 |
+
image = Image.open(image)
|
75 |
+
image = image.convert('RGB')
|
76 |
+
pixel_values = image_transform(image)
|
77 |
+
model_inputs['pixel_values'] = pixel_values
|
78 |
+
|
79 |
+
# for image-text matching
|
80 |
+
pos_model_inputs = self.tokenizer(
|
81 |
+
caption,
|
82 |
+
max_length=self.data_args.max_seq_length,
|
83 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
84 |
+
truncation=True,
|
85 |
+
return_tensors='pt',
|
86 |
+
)
|
87 |
+
model_inputs['positive_input_ids'] = pos_model_inputs['input_ids']
|
88 |
+
model_inputs['positive_attention_mask'] = pos_model_inputs['attention_mask']
|
89 |
+
neg_model_inputs = self.tokenizer(
|
90 |
+
neg_caption,
|
91 |
+
max_length=self.data_args.max_seq_length,
|
92 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
93 |
+
truncation=True,
|
94 |
+
return_tensors='pt',
|
95 |
+
)
|
96 |
+
model_inputs['negative_input_ids'] = neg_model_inputs['input_ids']
|
97 |
+
model_inputs['negative_attention_mask'] = neg_model_inputs['attention_mask']
|
98 |
+
|
99 |
+
# for image-text contrastive learning
|
100 |
+
summarize_model_inputs = self.tokenizer(
|
101 |
+
'summarize:' + caption,
|
102 |
+
max_length=self.data_args.max_seq_length,
|
103 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
104 |
+
truncation=True,
|
105 |
+
return_tensors='pt',
|
106 |
+
)
|
107 |
+
model_inputs['summarize_input_ids'] = summarize_model_inputs['input_ids']
|
108 |
+
model_inputs['summarize_attention_mask'] = summarize_model_inputs['attention_mask']
|
109 |
+
|
110 |
+
# for image-grounded text generation
|
111 |
+
prefix = f'English caption:'
|
112 |
+
content = caption
|
113 |
+
tokenized_prefix = self.tokenizer(
|
114 |
+
prefix, padding=False, truncation=True, return_tensors='pt',
|
115 |
+
)
|
116 |
+
prefix_input_ids = tokenized_prefix['input_ids'][:, :-1] # remove eos
|
117 |
+
prefix_attention_mask = tokenized_prefix['attention_mask'][:, :-1] # remove eos
|
118 |
+
tokenized_content = self.tokenizer(
|
119 |
+
content,
|
120 |
+
max_length=self.data_args.max_seq_length - prefix_input_ids.size(1) + 1,
|
121 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
122 |
+
truncation=True,
|
123 |
+
return_tensors='pt',
|
124 |
+
)
|
125 |
+
content_input_ids = tokenized_content['input_ids'][:, 1:] # remove bos
|
126 |
+
content_attention_mask = tokenized_content['attention_mask'][:, 1:] # remove bos
|
127 |
+
model_inputs['input_ids'] = torch.cat([prefix_input_ids, content_input_ids], dim=1)
|
128 |
+
model_inputs['attention_mask'] = torch.cat([prefix_attention_mask, content_attention_mask], dim=1)
|
129 |
+
labels = model_inputs['input_ids'].clone()
|
130 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
131 |
+
labels[:, :prefix_input_ids.size(1) - 1] = -100
|
132 |
+
model_inputs['labels'] = labels
|
133 |
+
return model_inputs
|
134 |
+
|
135 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
136 |
+
i = i % len(self.images)
|
137 |
+
j = random.randint(0, len(self.images) - 1)
|
138 |
+
while self.image_ids[j] == self.image_ids[i]:
|
139 |
+
j = random.randint(0, len(self.images) - 1)
|
140 |
+
ret = self.preprocess(self.images[i], self.captions[i], self.captions[j])
|
141 |
+
# for image-text matching
|
142 |
+
ret['positive_input_ids'] = ret['positive_input_ids'][0]
|
143 |
+
ret['positive_attention_mask'] = ret['positive_attention_mask'][0]
|
144 |
+
ret['negative_input_ids'] = ret['negative_input_ids'][0]
|
145 |
+
ret['negative_attention_mask'] = ret['negative_attention_mask'][0]
|
146 |
+
# for image-text contrastive learning
|
147 |
+
ret['summarize_input_ids'] = ret['summarize_input_ids'][0]
|
148 |
+
ret['summarize_attention_mask'] = ret['summarize_attention_mask'][0]
|
149 |
+
# for image-grounded text generation
|
150 |
+
ret['input_ids'] = ret['input_ids'][0]
|
151 |
+
ret['attention_mask'] = ret['attention_mask'][0]
|
152 |
+
ret['labels'] = ret['labels'][0]
|
153 |
+
ret['image_ids'] = torch.Tensor([self.image_ids[i]]).long()
|
154 |
+
return ret
|
155 |
+
|
156 |
+
|
157 |
+
class COCODataset(Dataset):
|
158 |
+
"""Dataset for supervised fine-tuning."""
|
159 |
+
|
160 |
+
def __init__(self, metas, tokenizer, data_args):
|
161 |
+
super(COCODataset, self).__init__()
|
162 |
+
|
163 |
+
annotations = json.load(open(metas['annotation']))
|
164 |
+
|
165 |
+
self.data_args = data_args
|
166 |
+
self.tokenizer = tokenizer
|
167 |
+
self.images = []
|
168 |
+
self.image_ids = []
|
169 |
+
self.captions = []
|
170 |
+
|
171 |
+
for annotation in annotations:
|
172 |
+
image_id = int(annotation['image_id'].split('_')[-1])
|
173 |
+
caption = annotation['caption']
|
174 |
+
caption = self.process_single_caption(caption)
|
175 |
+
image = annotation['image']
|
176 |
+
image_path = metas['root'] + '/' + image
|
177 |
+
self.images.append(image_path)
|
178 |
+
self.image_ids.append(image_id)
|
179 |
+
self.captions.append(caption)
|
180 |
+
print(f'There are {len(self.images)} images.')
|
181 |
+
print(f'There are {len(self.captions)} captions.')
|
182 |
+
|
183 |
+
def __len__(self):
|
184 |
+
return len(self.images)
|
185 |
+
|
186 |
+
def process_single_caption(self, caption, max_words=50):
|
187 |
+
caption = re.sub(r"([.!\"()*#:;~])", ' ', caption.lower())
|
188 |
+
caption = re.sub(r'\s{2,}', ' ', caption)
|
189 |
+
caption = caption.rstrip('\n')
|
190 |
+
caption = caption.strip(' ')
|
191 |
+
|
192 |
+
# truncate caption
|
193 |
+
caption_words = caption.split(' ')
|
194 |
+
if len(caption_words) > max_words:
|
195 |
+
caption = ' '.join(caption_words[: max_words])
|
196 |
+
return caption
|
197 |
+
|
198 |
+
def preprocess(self, image, caption, neg_caption):
|
199 |
+
model_inputs = dict()
|
200 |
+
|
201 |
+
# input image
|
202 |
+
image_transform = build_transform(input_size=self.data_args.force_image_size)
|
203 |
+
image = Image.open(image)
|
204 |
+
image = image.convert('RGB')
|
205 |
+
pixel_values = image_transform(image)
|
206 |
+
model_inputs['pixel_values'] = pixel_values
|
207 |
+
|
208 |
+
# for image-text matching
|
209 |
+
pos_model_inputs = self.tokenizer(
|
210 |
+
caption,
|
211 |
+
max_length=self.data_args.max_seq_length,
|
212 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
213 |
+
truncation=True,
|
214 |
+
return_tensors='pt',
|
215 |
+
)
|
216 |
+
model_inputs['positive_input_ids'] = pos_model_inputs['input_ids']
|
217 |
+
model_inputs['positive_attention_mask'] = pos_model_inputs['attention_mask']
|
218 |
+
neg_model_inputs = self.tokenizer(
|
219 |
+
neg_caption,
|
220 |
+
max_length=self.data_args.max_seq_length,
|
221 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
222 |
+
truncation=True,
|
223 |
+
return_tensors='pt',
|
224 |
+
)
|
225 |
+
model_inputs['negative_input_ids'] = neg_model_inputs['input_ids']
|
226 |
+
model_inputs['negative_attention_mask'] = neg_model_inputs['attention_mask']
|
227 |
+
|
228 |
+
# for image-text contrastive learning
|
229 |
+
summarize_model_inputs = self.tokenizer(
|
230 |
+
'summarize:' + caption,
|
231 |
+
max_length=self.data_args.max_seq_length,
|
232 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
233 |
+
truncation=True,
|
234 |
+
return_tensors='pt',
|
235 |
+
)
|
236 |
+
model_inputs['summarize_input_ids'] = summarize_model_inputs['input_ids']
|
237 |
+
model_inputs['summarize_attention_mask'] = summarize_model_inputs['attention_mask']
|
238 |
+
|
239 |
+
# for image-grounded text generation
|
240 |
+
prefix = f'English caption:'
|
241 |
+
content = caption
|
242 |
+
tokenized_prefix = self.tokenizer(
|
243 |
+
prefix, padding=False, truncation=True, return_tensors='pt',
|
244 |
+
)
|
245 |
+
prefix_input_ids = tokenized_prefix['input_ids'][:, :-1] # remove eos
|
246 |
+
prefix_attention_mask = tokenized_prefix['attention_mask'][:, :-1] # remove eos
|
247 |
+
tokenized_content = self.tokenizer(
|
248 |
+
content,
|
249 |
+
max_length=self.data_args.max_seq_length - prefix_input_ids.size(1) + 1,
|
250 |
+
padding='max_length' if self.data_args.pad_to_max_length else False,
|
251 |
+
truncation=True,
|
252 |
+
return_tensors='pt',
|
253 |
+
)
|
254 |
+
content_input_ids = tokenized_content['input_ids'][:, 1:] # remove bos
|
255 |
+
content_attention_mask = tokenized_content['attention_mask'][:, 1:] # remove bos
|
256 |
+
model_inputs['input_ids'] = torch.cat([prefix_input_ids, content_input_ids], dim=1)
|
257 |
+
model_inputs['attention_mask'] = torch.cat([prefix_attention_mask, content_attention_mask], dim=1)
|
258 |
+
labels = model_inputs['input_ids'].clone()
|
259 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
260 |
+
labels[:, :prefix_input_ids.size(1) - 1] = -100
|
261 |
+
model_inputs['labels'] = labels
|
262 |
+
return model_inputs
|
263 |
+
|
264 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
265 |
+
i = i % len(self.images)
|
266 |
+
j = random.randint(0, len(self.images) - 1)
|
267 |
+
while self.image_ids[j] == self.image_ids[i]:
|
268 |
+
j = random.randint(0, len(self.images) - 1)
|
269 |
+
ret = self.preprocess(self.images[i], self.captions[i], self.captions[j])
|
270 |
+
# for image-text matching
|
271 |
+
ret['positive_input_ids'] = ret['positive_input_ids'][0]
|
272 |
+
ret['positive_attention_mask'] = ret['positive_attention_mask'][0]
|
273 |
+
ret['negative_input_ids'] = ret['negative_input_ids'][0]
|
274 |
+
ret['negative_attention_mask'] = ret['negative_attention_mask'][0]
|
275 |
+
# for image-text contrastive learning
|
276 |
+
ret['summarize_input_ids'] = ret['summarize_input_ids'][0]
|
277 |
+
ret['summarize_attention_mask'] = ret['summarize_attention_mask'][0]
|
278 |
+
# for image-grounded text generation
|
279 |
+
ret['input_ids'] = ret['input_ids'][0]
|
280 |
+
ret['attention_mask'] = ret['attention_mask'][0]
|
281 |
+
ret['labels'] = ret['labels'][0]
|
282 |
+
ret['image_ids'] = torch.Tensor([self.image_ids[i]]).long()
|
283 |
+
return ret
|
InternVL/internvl_g/internvl/train/internvl_stage2_finetune.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import warnings
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
from typing import Dict, Optional
|
7 |
+
|
8 |
+
import torch.distributed as dist
|
9 |
+
import transformers
|
10 |
+
from internvl.dist_utils import init_dist
|
11 |
+
from internvl.model.internvl_stage2_retrieval import (InternVLConfig,
|
12 |
+
InternVLModel)
|
13 |
+
from internvl.train.dataset import COCODataset, FlickrDataset
|
14 |
+
from internvl.train.trainer_monkey_patch import replace_create_optimizer
|
15 |
+
from PIL import Image, ImageFile, PngImagePlugin
|
16 |
+
from transformers import (HfArgumentParser, LlamaTokenizer, Trainer,
|
17 |
+
TrainingArguments, default_data_collator, set_seed)
|
18 |
+
from transformers.trainer_utils import get_last_checkpoint
|
19 |
+
from transformers.utils.logging import (enable_default_handler,
|
20 |
+
enable_explicit_format, set_verbosity)
|
21 |
+
|
22 |
+
IGNORE_INDEX = -100
|
23 |
+
Image.MAX_IMAGE_PIXELS = None
|
24 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
25 |
+
MaximumDecompressedSize = 1024
|
26 |
+
MegaByte = 2 ** 20
|
27 |
+
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
|
28 |
+
|
29 |
+
warnings.filterwarnings('ignore')
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
33 |
+
|
34 |
+
ds_collections = {
|
35 |
+
'flickr30k_en_train': {
|
36 |
+
'root': './data/flickr30k/Images/',
|
37 |
+
'annotation': './data/flickr30k/flickr30k_train_karpathy.txt',
|
38 |
+
},
|
39 |
+
'flickr30k_cn_train': {
|
40 |
+
'root': './data/flickr30k/Images/',
|
41 |
+
'annotation': './data/flickr30k/flickr30k_cn_train.txt',
|
42 |
+
},
|
43 |
+
'coco_karpathy_train': {
|
44 |
+
'root': './data/coco/',
|
45 |
+
'annotation': './data/coco/annotations/coco_karpathy_train.json',
|
46 |
+
},
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class ModelArguments:
|
52 |
+
"""
|
53 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
54 |
+
"""
|
55 |
+
model_name_or_path: str = field(
|
56 |
+
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}
|
57 |
+
)
|
58 |
+
freeze_model: bool = field(
|
59 |
+
default=False,
|
60 |
+
metadata={'help': 'Set to True to freeze the entire model.'},
|
61 |
+
)
|
62 |
+
freeze_vision_model: bool = field(
|
63 |
+
default=False,
|
64 |
+
metadata={'help': 'Set to True to freeze the vision backbone of the model.'},
|
65 |
+
)
|
66 |
+
freeze_qllama: bool = field(
|
67 |
+
default=False,
|
68 |
+
metadata={'help': 'Set to True to freeze the QLLaMA of the model.'},
|
69 |
+
)
|
70 |
+
unfreeze_qllama_head: bool = field(
|
71 |
+
default=False,
|
72 |
+
metadata={'help': 'Set to True to unfreeze the head of the QLLaMA.'},
|
73 |
+
)
|
74 |
+
unfreeze_crossattn: bool = field(
|
75 |
+
default=False,
|
76 |
+
metadata={'help': 'Set to True to unfreeze the cross attention layers in the QLLaMA.'},
|
77 |
+
)
|
78 |
+
use_backbone_lora: int = field(
|
79 |
+
default=0, metadata={'help': 'If non-zero, indicates the use of LoRA in the vision backbone of the model'}
|
80 |
+
)
|
81 |
+
use_qllama_lora: int = field(
|
82 |
+
default=0, metadata={'help': 'If non-zero, indicates the use of LoRA in the QLLaMA of the model'}
|
83 |
+
)
|
84 |
+
use_custom_trainer: bool = field(
|
85 |
+
default=False, metadata={'help': 'Set to True to enable the use of a custom trainer.'},
|
86 |
+
)
|
87 |
+
drop_path_rate: float = field(
|
88 |
+
default=0.0, metadata={'help': 'Specify the value of drop path rate in the vision backbone. Default is 0.'}
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
@dataclass
|
93 |
+
class DataTrainingArguments:
|
94 |
+
"""
|
95 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
96 |
+
"""
|
97 |
+
dataset_name: Optional[str] = field(
|
98 |
+
default='flickr30k_en_train',
|
99 |
+
metadata={'help': 'Specify the name of dataset to be used.'},
|
100 |
+
)
|
101 |
+
max_seq_length: Optional[int] = field(
|
102 |
+
default=80,
|
103 |
+
metadata={
|
104 |
+
'help': (
|
105 |
+
'The maximum total input sequence length after tokenization. Sequences longer '
|
106 |
+
'than this will be truncated, sequences shorter will be padded.'
|
107 |
+
)
|
108 |
+
},
|
109 |
+
)
|
110 |
+
force_image_size: Optional[int] = field(
|
111 |
+
default=224,
|
112 |
+
metadata={'help': 'Specify the image size for training models.'},
|
113 |
+
)
|
114 |
+
pad_to_max_length: bool = field(
|
115 |
+
default=False,
|
116 |
+
metadata={
|
117 |
+
'help': (
|
118 |
+
'Whether to pad all samples to model maximum sentence length. '
|
119 |
+
'If False, will pad the samples dynamically when batching to the maximum length in the batch. More '
|
120 |
+
'efficient on GPU but very bad for TPU.'
|
121 |
+
)
|
122 |
+
},
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def main():
|
127 |
+
# Parse input arguments
|
128 |
+
# See all possible arguments in src/transformers/training_args.py
|
129 |
+
# If use DeepSpeed zero3, init_dist must before HfArgumentParser
|
130 |
+
launcher = os.environ.get('LAUNCHER', 'slurm')
|
131 |
+
init_dist(launcher=launcher, backend='nccl')
|
132 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
133 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
|
134 |
+
# If we pass only one argument to the script, and it's the path to a json file,
|
135 |
+
# let's parse it to get our arguments.
|
136 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
137 |
+
else:
|
138 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
139 |
+
|
140 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
141 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
142 |
+
# send_example_telemetry('finetune Flickr30K', model_args, data_args)
|
143 |
+
|
144 |
+
# Setup logging
|
145 |
+
logging.basicConfig(
|
146 |
+
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
147 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
148 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
149 |
+
)
|
150 |
+
|
151 |
+
if training_args.should_log:
|
152 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
153 |
+
transformers.utils.logging.set_verbosity_info()
|
154 |
+
|
155 |
+
log_level = training_args.get_process_log_level()
|
156 |
+
logger.setLevel(log_level)
|
157 |
+
set_verbosity(log_level)
|
158 |
+
enable_default_handler()
|
159 |
+
enable_explicit_format()
|
160 |
+
|
161 |
+
# Log on each process the small summary:
|
162 |
+
logger.warning(
|
163 |
+
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
|
164 |
+
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
|
165 |
+
)
|
166 |
+
logger.info(f'Training/evaluation parameters {training_args}')
|
167 |
+
|
168 |
+
# Detecting last checkpoint and eventually continue from last checkpoint.
|
169 |
+
last_checkpoint = None
|
170 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
171 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
172 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
173 |
+
raise ValueError(
|
174 |
+
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
|
175 |
+
'Use --overwrite_output_dir to overcome.'
|
176 |
+
)
|
177 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
178 |
+
logger.info(
|
179 |
+
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
|
180 |
+
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
|
181 |
+
)
|
182 |
+
# Set seed before initializing model.
|
183 |
+
set_seed(training_args.seed)
|
184 |
+
|
185 |
+
# Load pretrained model, tokenizer, and image processor
|
186 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
187 |
+
model_args.model_name_or_path,
|
188 |
+
add_eos_token=True
|
189 |
+
)
|
190 |
+
|
191 |
+
if 'flickr' in data_args.dataset_name:
|
192 |
+
train_dataset = FlickrDataset(metas=ds_collections[data_args.dataset_name],
|
193 |
+
tokenizer=tokenizer, data_args=data_args)
|
194 |
+
elif 'coco' in data_args.dataset_name:
|
195 |
+
train_dataset = COCODataset(metas=ds_collections[data_args.dataset_name],
|
196 |
+
tokenizer=tokenizer, data_args=data_args)
|
197 |
+
config = InternVLConfig.from_pretrained(model_args.model_name_or_path)
|
198 |
+
config.vision_config.drop_path_rate = model_args.drop_path_rate
|
199 |
+
model = InternVLModel.from_pretrained(
|
200 |
+
model_args.model_name_or_path,
|
201 |
+
# ignore_mismatched_sizes=True,
|
202 |
+
config=config
|
203 |
+
)
|
204 |
+
if data_args.force_image_size != 224:
|
205 |
+
model.config.force_image_size = data_args.force_image_size
|
206 |
+
model.vision_model.resize_pos_embeddings(old_size=224, new_size=data_args.force_image_size, patch_size=14)
|
207 |
+
|
208 |
+
model.config.use_cache = False
|
209 |
+
model.config.qllama_config.use_cache = False
|
210 |
+
model.qllama.gradient_checkpointing = True
|
211 |
+
model.qllama.model.gradient_checkpointing = True
|
212 |
+
model.vision_model.gradient_checkpointing = True
|
213 |
+
model.vision_model.encoder.gradient_checkpointing = True
|
214 |
+
|
215 |
+
def _freeze_params(module):
|
216 |
+
for param in module.parameters():
|
217 |
+
param.requires_grad = False
|
218 |
+
|
219 |
+
if model_args.freeze_model:
|
220 |
+
_freeze_params(model)
|
221 |
+
|
222 |
+
if model_args.freeze_vision_model:
|
223 |
+
model.vision_model = model.vision_model.eval()
|
224 |
+
_freeze_params(model.vision_model)
|
225 |
+
|
226 |
+
if model_args.freeze_qllama:
|
227 |
+
model.qllama = model.qllama.eval()
|
228 |
+
_freeze_params(model.qllama)
|
229 |
+
|
230 |
+
if model_args.use_backbone_lora:
|
231 |
+
model.wrap_backbone_lora(r=model_args.use_backbone_lora, lora_alpha=model_args.use_backbone_lora * 2)
|
232 |
+
model.config.use_backbone_lora = model_args.use_backbone_lora
|
233 |
+
|
234 |
+
if model_args.use_qllama_lora:
|
235 |
+
model.wrap_qllama_lora(r=model_args.use_qllama_lora, lora_alpha=model_args.use_backbone_lora * 2)
|
236 |
+
model.config.use_qllama_lora = model_args.use_qllama_lora
|
237 |
+
|
238 |
+
if model_args.unfreeze_crossattn:
|
239 |
+
for name, param in model.qllama.named_parameters():
|
240 |
+
if 'cross_attn' in name:
|
241 |
+
param.requires_grad = True
|
242 |
+
|
243 |
+
if model_args.unfreeze_qllama_head:
|
244 |
+
model.qllama.lm_head.weight.requires_grad = True
|
245 |
+
model.text_projection.requires_grad = True
|
246 |
+
|
247 |
+
# print trainable parameters
|
248 |
+
if dist.get_rank() == 0:
|
249 |
+
for name, param in model.named_parameters():
|
250 |
+
print(name, param.requires_grad)
|
251 |
+
|
252 |
+
# set seed for torch dataloaders
|
253 |
+
set_seed(training_args.seed)
|
254 |
+
|
255 |
+
# Initialize our Trainer
|
256 |
+
if model_args.use_custom_trainer:
|
257 |
+
replace_create_optimizer()
|
258 |
+
|
259 |
+
trainer = Trainer(
|
260 |
+
model=model,
|
261 |
+
args=training_args,
|
262 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
263 |
+
eval_dataset=None,
|
264 |
+
tokenizer=tokenizer,
|
265 |
+
data_collator=default_data_collator,
|
266 |
+
)
|
267 |
+
|
268 |
+
# Training
|
269 |
+
if training_args.do_train:
|
270 |
+
checkpoint = None
|
271 |
+
if training_args.resume_from_checkpoint is not None:
|
272 |
+
checkpoint = training_args.resume_from_checkpoint
|
273 |
+
elif last_checkpoint is not None:
|
274 |
+
checkpoint = last_checkpoint
|
275 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
276 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
277 |
+
|
278 |
+
metrics = train_result.metrics
|
279 |
+
metrics['train_samples'] = len(train_dataset)
|
280 |
+
trainer.log_metrics('train', metrics)
|
281 |
+
trainer.save_metrics('train', metrics)
|
282 |
+
trainer.save_state()
|
283 |
+
|
284 |
+
|
285 |
+
if __name__ == '__main__':
|
286 |
+
main()
|
InternVL/internvl_g/internvl/train/trainer_monkey_patch.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import transformers
|
7 |
+
from transformers import Trainer, logging
|
8 |
+
from transformers.trainer import is_sagemaker_mp_enabled
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def get_num_layer_for_vit_and_qllama(var_name, vit_num_max_layer, llama_num_max_layer):
|
14 |
+
if var_name in ('query_tokens', 'logit_scale',):
|
15 |
+
return 0
|
16 |
+
if var_name.startswith('clip_projector.'):
|
17 |
+
return vit_num_max_layer
|
18 |
+
if var_name.startswith('clip_projector2.') or var_name.startswith('itm_head.') or \
|
19 |
+
var_name == 'text_projection':
|
20 |
+
return llama_num_max_layer
|
21 |
+
if var_name.startswith('vision_model.'):
|
22 |
+
if 'embeddings.' in var_name:
|
23 |
+
return 0
|
24 |
+
if 'layers.' in var_name:
|
25 |
+
var_name = var_name.split('layers.')[-1]
|
26 |
+
layer_id = int(var_name.split('.')[0])
|
27 |
+
return layer_id + 1
|
28 |
+
if var_name.startswith('qllama.'):
|
29 |
+
if 'embed_tokens' in var_name:
|
30 |
+
return 0
|
31 |
+
if 'layers.' in var_name:
|
32 |
+
var_name = var_name.split('layers.')[-1]
|
33 |
+
layer_id = int(var_name.split('.')[0])
|
34 |
+
return layer_id + 1
|
35 |
+
else:
|
36 |
+
return llama_num_max_layer
|
37 |
+
return 0
|
38 |
+
|
39 |
+
|
40 |
+
def param_classification(name):
|
41 |
+
if name in ['query_tokens', 'text_projection', 'logit_scale']:
|
42 |
+
return 'qllama'
|
43 |
+
elif name.startswith('vision_model.'):
|
44 |
+
return 'vit'
|
45 |
+
elif name.startswith('qllama.'):
|
46 |
+
return 'qllama'
|
47 |
+
elif name.startswith('clip_projector.'):
|
48 |
+
return 'vit'
|
49 |
+
elif name.startswith('clip_projector2.'):
|
50 |
+
return 'qllama'
|
51 |
+
elif name.startswith('itm_head.'):
|
52 |
+
return 'qllama'
|
53 |
+
else:
|
54 |
+
return 'other'
|
55 |
+
|
56 |
+
|
57 |
+
def create_optimizer(self):
|
58 |
+
"""
|
59 |
+
Setup the optimizer.
|
60 |
+
|
61 |
+
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
|
62 |
+
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
|
63 |
+
"""
|
64 |
+
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
|
65 |
+
|
66 |
+
parameter_groups = {}
|
67 |
+
try: # for stage2 model
|
68 |
+
vit_num_layers = opt_model.config.vision_config.num_hidden_layers + 2
|
69 |
+
qllama_num_layers = opt_model.config.qllama_config.num_hidden_layers + 2
|
70 |
+
except: # for stage3 model
|
71 |
+
vit_num_layers = opt_model.qllama.config.vision_config.num_hidden_layers + 2
|
72 |
+
qllama_num_layers = opt_model.qllama.config.qllama_config.num_hidden_layers + 2
|
73 |
+
print('vit_num_layers:', vit_num_layers)
|
74 |
+
print('qllama_num_layers:', qllama_num_layers)
|
75 |
+
|
76 |
+
vit_layer_decay_rate = float(os.getenv('VIT_LAYER_DECAY_RATE', 1.0))
|
77 |
+
qllama_layer_decay_rate = float(os.getenv('QLLAMA_LAYER_DECAY_RATE', 1.0))
|
78 |
+
print('vit_layer_decay_rate:', vit_layer_decay_rate)
|
79 |
+
print('qllama_layer_decay_rate:', qllama_layer_decay_rate)
|
80 |
+
|
81 |
+
for name, param in opt_model.named_parameters():
|
82 |
+
if not param.requires_grad:
|
83 |
+
continue # frozen weights
|
84 |
+
if len(param.shape) == 1 or name.endswith('.bias'):
|
85 |
+
group_name = 'no_decay'
|
86 |
+
this_weight_decay = 0.
|
87 |
+
else:
|
88 |
+
group_name = 'decay'
|
89 |
+
this_weight_decay = self.args.weight_decay
|
90 |
+
|
91 |
+
cls = param_classification(name)
|
92 |
+
layer_id = get_num_layer_for_vit_and_qllama(name, vit_num_layers, qllama_num_layers)
|
93 |
+
group_name = '%s_layer_%d_%s' % (cls, layer_id, group_name)
|
94 |
+
if group_name not in parameter_groups:
|
95 |
+
if cls == 'vit':
|
96 |
+
scale = vit_layer_decay_rate ** (vit_num_layers - layer_id - 1)
|
97 |
+
else:
|
98 |
+
scale = qllama_layer_decay_rate ** (qllama_num_layers - layer_id - 1)
|
99 |
+
scale = min(1.0, scale)
|
100 |
+
parameter_groups[group_name] = {
|
101 |
+
'weight_decay': this_weight_decay,
|
102 |
+
'params': [],
|
103 |
+
'param_names': [],
|
104 |
+
'lr_scale': scale,
|
105 |
+
'group_name': group_name,
|
106 |
+
'lr': scale * self.args.learning_rate,
|
107 |
+
}
|
108 |
+
parameter_groups[group_name]['params'].append(param)
|
109 |
+
parameter_groups[group_name]['param_names'].append(name)
|
110 |
+
|
111 |
+
rank = torch.distributed.get_rank()
|
112 |
+
if rank == 0:
|
113 |
+
to_display = {}
|
114 |
+
for key in parameter_groups:
|
115 |
+
to_display[key] = {
|
116 |
+
'param_names': parameter_groups[key]['param_names'],
|
117 |
+
'lr_scale': parameter_groups[key]['lr_scale'],
|
118 |
+
'lr': parameter_groups[key]['lr'],
|
119 |
+
'weight_decay': parameter_groups[key]['weight_decay'],
|
120 |
+
}
|
121 |
+
print('Param groups = %s' % json.dumps(to_display, indent=2))
|
122 |
+
|
123 |
+
optimizer_grouped_parameters = list(parameter_groups.values())
|
124 |
+
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
|
125 |
+
|
126 |
+
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
|
127 |
+
if optimizer_cls.__name__ == 'Adam8bit':
|
128 |
+
import bitsandbytes
|
129 |
+
|
130 |
+
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
|
131 |
+
|
132 |
+
skipped = 0
|
133 |
+
for module in opt_model.modules():
|
134 |
+
if isinstance(module, nn.Embedding):
|
135 |
+
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
|
136 |
+
logger.info(f'skipped {module}: {skipped / 2 ** 20}M params')
|
137 |
+
manager.register_module_override(module, 'weight', {'optim_bits': 32})
|
138 |
+
logger.debug(f'bitsandbytes: will optimize {module} in fp32')
|
139 |
+
logger.info(f'skipped: {skipped / 2 ** 20}M params')
|
140 |
+
|
141 |
+
if is_sagemaker_mp_enabled():
|
142 |
+
import smdistributed.modelparallel.torch as smp
|
143 |
+
self.optimizer = smp.DistributedOptimizer(self.optimizer)
|
144 |
+
|
145 |
+
return self.optimizer
|
146 |
+
|
147 |
+
|
148 |
+
def replace_create_optimizer():
|
149 |
+
print('Replace original create_optimizer with custom create_optimizer')
|
150 |
+
transformers.Trainer.create_optimizer = create_optimizer
|
InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_coco_364_bs1024_ep5.sh
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
export VIT_LAYER_DECAY_RATE=0.9
|
4 |
+
export QLLAMA_LAYER_DECAY_RATE=0.9
|
5 |
+
|
6 |
+
PARTITION=${PARTITION:-"VC2"}
|
7 |
+
GPUS=${GPUS:-32}
|
8 |
+
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
9 |
+
QUOTA_TYPE=${QUOTA_TYPE:-"reserved"}
|
10 |
+
NODES=$((GPUS / GPUS_PER_NODE))
|
11 |
+
CPUS_PER_TASK=${CPUS_PER_TASK:-10}
|
12 |
+
SRUN_ARGS=${SRUN_ARGS:-""}
|
13 |
+
|
14 |
+
|
15 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
16 |
+
|
17 |
+
# number of gpus: 32
|
18 |
+
# batch size per gpu: 32
|
19 |
+
# gradient accumulation steps: 1
|
20 |
+
# total batch size: 1024
|
21 |
+
# epoch: 5
|
22 |
+
srun -p ${PARTITION} \
|
23 |
+
--gres=gpu:${GPUS_PER_NODE} \
|
24 |
+
--nodes=${NODES} \
|
25 |
+
--ntasks=${GPUS} \
|
26 |
+
--ntasks-per-node=${GPUS_PER_NODE} \
|
27 |
+
--cpus-per-task=${CPUS_PER_TASK} \
|
28 |
+
--kill-on-bad-exit=1 \
|
29 |
+
--quotatype=${QUOTA_TYPE} \
|
30 |
+
${SRUN_ARGS} \
|
31 |
+
python -u internvl/train/internvl_stage2_finetune.py \
|
32 |
+
--dataset_name 'coco_karpathy_train' \
|
33 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
34 |
+
--output_dir "./work_dirs/internvl_stage2_finetune_coco_364_bs1024_ep5" \
|
35 |
+
--overwrite_output_dir True \
|
36 |
+
--force_image_size 364 \
|
37 |
+
--drop_path_rate 0.3 \
|
38 |
+
--use_custom_trainer \
|
39 |
+
--dataloader_num_workers 2 \
|
40 |
+
--pad_to_max_length True \
|
41 |
+
--bf16 True \
|
42 |
+
--num_train_epochs 5 \
|
43 |
+
--per_device_train_batch_size 32 \
|
44 |
+
--gradient_accumulation_steps 1 \
|
45 |
+
--evaluation_strategy "no" \
|
46 |
+
--save_strategy "steps" \
|
47 |
+
--save_steps 100 \
|
48 |
+
--save_total_limit 5 \
|
49 |
+
--learning_rate 1e-6 \
|
50 |
+
--weight_decay 0.05 \
|
51 |
+
--warmup_steps 100 \
|
52 |
+
--lr_scheduler_type "cosine" \
|
53 |
+
--logging_steps 1 \
|
54 |
+
--max_seq_length 80 \
|
55 |
+
--do_train True \
|
56 |
+
--optim adamw_torch \
|
57 |
+
--deepspeed "zero_stage1_config.json" \
|
58 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_flickr_364_bs1024_ep10.sh
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
export VIT_LAYER_DECAY_RATE=0.9
|
4 |
+
export QLLAMA_LAYER_DECAY_RATE=0.9
|
5 |
+
|
6 |
+
PARTITION=${PARTITION:-"VC2"}
|
7 |
+
GPUS=${GPUS:-32}
|
8 |
+
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
9 |
+
QUOTA_TYPE=${QUOTA_TYPE:-"reserved"}
|
10 |
+
NODES=$((GPUS / GPUS_PER_NODE))
|
11 |
+
CPUS_PER_TASK=${CPUS_PER_TASK:-10}
|
12 |
+
SRUN_ARGS=${SRUN_ARGS:-""}
|
13 |
+
|
14 |
+
|
15 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
16 |
+
|
17 |
+
# number of gpus: 32
|
18 |
+
# batch size per gpu: 32
|
19 |
+
# gradient accumulation steps: 1
|
20 |
+
# total batch size: 1024
|
21 |
+
# epoch: 10
|
22 |
+
srun -p ${PARTITION} \
|
23 |
+
--gres=gpu:${GPUS_PER_NODE} \
|
24 |
+
--nodes=${NODES} \
|
25 |
+
--ntasks=${GPUS} \
|
26 |
+
--ntasks-per-node=${GPUS_PER_NODE} \
|
27 |
+
--cpus-per-task=${CPUS_PER_TASK} \
|
28 |
+
--kill-on-bad-exit=1 \
|
29 |
+
--quotatype=${QUOTA_TYPE} \
|
30 |
+
${SRUN_ARGS} \
|
31 |
+
python -u internvl/train/internvl_stage2_finetune.py \
|
32 |
+
--dataset_name 'flickr30k_en_train' \
|
33 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
34 |
+
--output_dir "./work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10" \
|
35 |
+
--overwrite_output_dir True \
|
36 |
+
--force_image_size 364 \
|
37 |
+
--drop_path_rate 0.3 \
|
38 |
+
--use_custom_trainer \
|
39 |
+
--dataloader_num_workers 2 \
|
40 |
+
--pad_to_max_length True \
|
41 |
+
--bf16 True \
|
42 |
+
--num_train_epochs 10 \
|
43 |
+
--per_device_train_batch_size 32 \
|
44 |
+
--gradient_accumulation_steps 1 \
|
45 |
+
--evaluation_strategy "no" \
|
46 |
+
--save_strategy "steps" \
|
47 |
+
--save_steps 100 \
|
48 |
+
--save_total_limit 5 \
|
49 |
+
--learning_rate 1e-6 \
|
50 |
+
--weight_decay 0.05 \
|
51 |
+
--warmup_steps 100 \
|
52 |
+
--lr_scheduler_type "cosine" \
|
53 |
+
--logging_steps 1 \
|
54 |
+
--max_seq_length 80 \
|
55 |
+
--do_train True \
|
56 |
+
--optim adamw_torch \
|
57 |
+
--deepspeed "zero_stage1_config.json" \
|
58 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/finetune/internvl_stage2_finetune_flickrcn_364_bs1024_ep10.sh
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
export VIT_LAYER_DECAY_RATE=0.9
|
4 |
+
export QLLAMA_LAYER_DECAY_RATE=0.9
|
5 |
+
|
6 |
+
PARTITION=${PARTITION:-"VC2"}
|
7 |
+
GPUS=${GPUS:-32}
|
8 |
+
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
9 |
+
QUOTA_TYPE=${QUOTA_TYPE:-"reserved"}
|
10 |
+
NODES=$((GPUS / GPUS_PER_NODE))
|
11 |
+
CPUS_PER_TASK=${CPUS_PER_TASK:-10}
|
12 |
+
SRUN_ARGS=${SRUN_ARGS:-""}
|
13 |
+
|
14 |
+
|
15 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
16 |
+
|
17 |
+
# number of gpus: 32
|
18 |
+
# batch size per gpu: 32
|
19 |
+
# gradient accumulation steps: 1
|
20 |
+
# total batch size: 1024
|
21 |
+
# epoch: 10
|
22 |
+
srun -p ${PARTITION} \
|
23 |
+
--gres=gpu:${GPUS_PER_NODE} \
|
24 |
+
--nodes=${NODES} \
|
25 |
+
--ntasks=${GPUS} \
|
26 |
+
--ntasks-per-node=${GPUS_PER_NODE} \
|
27 |
+
--cpus-per-task=${CPUS_PER_TASK} \
|
28 |
+
--kill-on-bad-exit=1 \
|
29 |
+
--quotatype=${QUOTA_TYPE} \
|
30 |
+
${SRUN_ARGS} \
|
31 |
+
python -u internvl/train/internvl_stage2_finetune.py \
|
32 |
+
--dataset_name 'flickr30k_cn_train' \
|
33 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
34 |
+
--output_dir "./work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10" \
|
35 |
+
--overwrite_output_dir True \
|
36 |
+
--force_image_size 364 \
|
37 |
+
--drop_path_rate 0.3 \
|
38 |
+
--use_custom_trainer \
|
39 |
+
--dataloader_num_workers 2 \
|
40 |
+
--pad_to_max_length True \
|
41 |
+
--bf16 True \
|
42 |
+
--num_train_epochs 10 \
|
43 |
+
--per_device_train_batch_size 32 \
|
44 |
+
--gradient_accumulation_steps 1 \
|
45 |
+
--evaluation_strategy "no" \
|
46 |
+
--save_strategy "steps" \
|
47 |
+
--save_steps 100 \
|
48 |
+
--save_total_limit 5 \
|
49 |
+
--learning_rate 1e-6 \
|
50 |
+
--weight_decay 0.05 \
|
51 |
+
--warmup_steps 100 \
|
52 |
+
--lr_scheduler_type "cosine" \
|
53 |
+
--logging_steps 1 \
|
54 |
+
--max_seq_length 80 \
|
55 |
+
--do_train True \
|
56 |
+
--optim adamw_torch \
|
57 |
+
--deepspeed "zero_stage1_config.json" \
|
58 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_head_4gpu.sh
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_coco_364_bs1024_ep5_head_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 5
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'coco_karpathy_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--force_image_size 224 \
|
39 |
+
--drop_path_rate 0.0 \
|
40 |
+
--dataloader_num_workers 2 \
|
41 |
+
--pad_to_max_length True \
|
42 |
+
--bf16 True \
|
43 |
+
--num_train_epochs 5 \
|
44 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
45 |
+
--gradient_accumulation_steps 1 \
|
46 |
+
--evaluation_strategy "no" \
|
47 |
+
--save_strategy "steps" \
|
48 |
+
--save_steps 100 \
|
49 |
+
--save_total_limit 5 \
|
50 |
+
--learning_rate 1e-6 \
|
51 |
+
--weight_decay 0.05 \
|
52 |
+
--warmup_steps 100 \
|
53 |
+
--lr_scheduler_type "cosine" \
|
54 |
+
--logging_steps 1 \
|
55 |
+
--max_seq_length 80 \
|
56 |
+
--do_train True \
|
57 |
+
--optim adamw_torch \
|
58 |
+
--deepspeed "zero_stage3_config.json" \
|
59 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_head_4gpu.sh
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10_head_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 10
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'flickr30k_en_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--force_image_size 224 \
|
39 |
+
--drop_path_rate 0.0 \
|
40 |
+
--dataloader_num_workers 2 \
|
41 |
+
--pad_to_max_length True \
|
42 |
+
--bf16 True \
|
43 |
+
--num_train_epochs 10 \
|
44 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
45 |
+
--gradient_accumulation_steps 1 \
|
46 |
+
--evaluation_strategy "no" \
|
47 |
+
--save_strategy "steps" \
|
48 |
+
--save_steps 100 \
|
49 |
+
--save_total_limit 5 \
|
50 |
+
--learning_rate 1e-6 \
|
51 |
+
--weight_decay 0.05 \
|
52 |
+
--warmup_steps 100 \
|
53 |
+
--lr_scheduler_type "cosine" \
|
54 |
+
--logging_steps 1 \
|
55 |
+
--max_seq_length 80 \
|
56 |
+
--do_train True \
|
57 |
+
--optim adamw_torch \
|
58 |
+
--deepspeed "zero_stage3_config.json" \
|
59 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/head_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_head_4gpu.sh
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10_head_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 10
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'flickr30k_cn_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--force_image_size 224 \
|
39 |
+
--drop_path_rate 0.0 \
|
40 |
+
--dataloader_num_workers 2 \
|
41 |
+
--pad_to_max_length True \
|
42 |
+
--bf16 True \
|
43 |
+
--num_train_epochs 10 \
|
44 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
45 |
+
--gradient_accumulation_steps 1 \
|
46 |
+
--evaluation_strategy "no" \
|
47 |
+
--save_strategy "steps" \
|
48 |
+
--save_steps 100 \
|
49 |
+
--save_total_limit 5 \
|
50 |
+
--learning_rate 1e-6 \
|
51 |
+
--weight_decay 0.05 \
|
52 |
+
--warmup_steps 100 \
|
53 |
+
--lr_scheduler_type "cosine" \
|
54 |
+
--logging_steps 1 \
|
55 |
+
--max_seq_length 80 \
|
56 |
+
--do_train True \
|
57 |
+
--optim adamw_torch \
|
58 |
+
--deepspeed "zero_stage3_config.json" \
|
59 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_lora16_4gpu.sh
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_coco_364_bs1024_ep5_lora_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 5
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'coco_karpathy_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--use_backbone_lora 16 \
|
39 |
+
--use_qllama_lora 16 \
|
40 |
+
--force_image_size 224 \
|
41 |
+
--drop_path_rate 0.0 \
|
42 |
+
--dataloader_num_workers 2 \
|
43 |
+
--pad_to_max_length True \
|
44 |
+
--bf16 True \
|
45 |
+
--num_train_epochs 5 \
|
46 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
47 |
+
--gradient_accumulation_steps 1 \
|
48 |
+
--evaluation_strategy "no" \
|
49 |
+
--save_strategy "steps" \
|
50 |
+
--save_steps 100 \
|
51 |
+
--save_total_limit 5 \
|
52 |
+
--learning_rate 1e-6 \
|
53 |
+
--weight_decay 0.05 \
|
54 |
+
--warmup_steps 100 \
|
55 |
+
--lr_scheduler_type "cosine" \
|
56 |
+
--logging_steps 1 \
|
57 |
+
--max_seq_length 80 \
|
58 |
+
--do_train True \
|
59 |
+
--optim adamw_torch \
|
60 |
+
--deepspeed "zero_stage3_config.json" \
|
61 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_lora16_4gpu.sh
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10_lora_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 10
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'flickr30k_en_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--use_backbone_lora 16 \
|
39 |
+
--use_qllama_lora 16 \
|
40 |
+
--force_image_size 224 \
|
41 |
+
--drop_path_rate 0.0 \
|
42 |
+
--dataloader_num_workers 2 \
|
43 |
+
--pad_to_max_length True \
|
44 |
+
--bf16 True \
|
45 |
+
--num_train_epochs 10 \
|
46 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
47 |
+
--gradient_accumulation_steps 1 \
|
48 |
+
--evaluation_strategy "no" \
|
49 |
+
--save_strategy "steps" \
|
50 |
+
--save_steps 100 \
|
51 |
+
--save_total_limit 5 \
|
52 |
+
--learning_rate 1e-6 \
|
53 |
+
--weight_decay 0.05 \
|
54 |
+
--warmup_steps 100 \
|
55 |
+
--lr_scheduler_type "cosine" \
|
56 |
+
--logging_steps 1 \
|
57 |
+
--max_seq_length 80 \
|
58 |
+
--do_train True \
|
59 |
+
--optim adamw_torch \
|
60 |
+
--deepspeed "zero_stage3_config.json" \
|
61 |
+
--report_to "tensorboard"
|
InternVL/internvl_g/shell/lora_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_lora16_4gpu.sh
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
GPUS=${GPUS:-4}
|
4 |
+
BATCH_SIZE=${BATCH_SIZE:-32}
|
5 |
+
|
6 |
+
|
7 |
+
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
|
8 |
+
export MASTER_PORT=34229
|
9 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
10 |
+
export LAUNCHER=pytorch
|
11 |
+
|
12 |
+
OUTPUT_DIR='work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10_lora_4gpu'
|
13 |
+
|
14 |
+
if [ ! -d "$OUTPUT_DIR" ]; then
|
15 |
+
mkdir -p "$OUTPUT_DIR"
|
16 |
+
fi
|
17 |
+
|
18 |
+
# number of gpus: 32
|
19 |
+
# batch size per gpu: 32
|
20 |
+
# gradient accumulation steps: 1
|
21 |
+
# total batch size: 1024
|
22 |
+
# epoch: 10
|
23 |
+
torchrun \
|
24 |
+
--nnodes=1 \
|
25 |
+
--node_rank=0 \
|
26 |
+
--master_addr=127.0.0.1 \
|
27 |
+
--nproc_per_node=${GPUS} \
|
28 |
+
--master_port=${MASTER_PORT} \
|
29 |
+
internvl/train/internvl_stage2_finetune.py \
|
30 |
+
--dataset_name 'flickr30k_cn_train' \
|
31 |
+
--model_name_or_path "./pretrained/InternVL-14B-224px" \
|
32 |
+
--output_dir ${OUTPUT_DIR} \
|
33 |
+
--overwrite_output_dir True \
|
34 |
+
--freeze_model \
|
35 |
+
--freeze_vision_model \
|
36 |
+
--freeze_qllama \
|
37 |
+
--unfreeze_qllama_head \
|
38 |
+
--use_backbone_lora 16 \
|
39 |
+
--use_qllama_lora 16 \
|
40 |
+
--force_image_size 224 \
|
41 |
+
--drop_path_rate 0.0 \
|
42 |
+
--dataloader_num_workers 2 \
|
43 |
+
--pad_to_max_length True \
|
44 |
+
--bf16 True \
|
45 |
+
--num_train_epochs 10 \
|
46 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
47 |
+
--gradient_accumulation_steps 1 \
|
48 |
+
--evaluation_strategy "no" \
|
49 |
+
--save_strategy "steps" \
|
50 |
+
--save_steps 100 \
|
51 |
+
--save_total_limit 5 \
|
52 |
+
--learning_rate 1e-6 \
|
53 |
+
--weight_decay 0.05 \
|
54 |
+
--warmup_steps 100 \
|
55 |
+
--lr_scheduler_type "cosine" \
|
56 |
+
--logging_steps 1 \
|
57 |
+
--max_seq_length 80 \
|
58 |
+
--do_train True \
|
59 |
+
--optim adamw_torch \
|
60 |
+
--deepspeed "zero_stage3_config.json" \
|
61 |
+
--report_to "tensorboard"
|
InternVL/segmentation/configs/_base_/datasets/ade20k_504x504.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ADE20KDataset'
|
3 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
crop_size = (504, 504)
|
7 |
+
train_pipeline = [
|
8 |
+
dict(type='LoadImageFromFile'),
|
9 |
+
dict(type='LoadAnnotations', reduce_zero_label=True),
|
10 |
+
dict(type='Resize', img_scale=(2016, 504), ratio_range=(0.5, 2.0)),
|
11 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PhotoMetricDistortion'),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
16 |
+
dict(type='DefaultFormatBundle'),
|
17 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(2016, 504),
|
24 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='SETR_Resize', keep_ratio=True,
|
28 |
+
crop_size=crop_size, setr_multi_scale=True),
|
29 |
+
dict(type='ResizeToMultiple', size_divisor=14),
|
30 |
+
dict(type='RandomFlip'),
|
31 |
+
dict(type='Normalize', **img_norm_cfg),
|
32 |
+
dict(type='ImageToTensor', keys=['img']),
|
33 |
+
dict(type='Collect', keys=['img']),
|
34 |
+
])
|
35 |
+
]
|
36 |
+
data = dict(
|
37 |
+
samples_per_gpu=4,
|
38 |
+
workers_per_gpu=4,
|
39 |
+
train=dict(
|
40 |
+
type=dataset_type,
|
41 |
+
data_root=data_root,
|
42 |
+
img_dir='images/training',
|
43 |
+
ann_dir='annotations/training',
|
44 |
+
pipeline=train_pipeline),
|
45 |
+
val=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
data_root=data_root,
|
48 |
+
img_dir='images/validation',
|
49 |
+
ann_dir='annotations/validation',
|
50 |
+
pipeline=test_pipeline),
|
51 |
+
test=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
img_dir='images/validation',
|
55 |
+
ann_dir='annotations/validation',
|
56 |
+
pipeline=test_pipeline))
|
InternVL/segmentation/configs/_base_/datasets/ade20k_504x504_1of16.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ADE20KDataset'
|
3 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
crop_size = (504, 504)
|
7 |
+
train_pipeline = [
|
8 |
+
dict(type='LoadImageFromFile'),
|
9 |
+
dict(type='LoadAnnotations', reduce_zero_label=True),
|
10 |
+
dict(type='Resize', img_scale=(2016, 504), ratio_range=(0.5, 2.0)),
|
11 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PhotoMetricDistortion'),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
16 |
+
dict(type='DefaultFormatBundle'),
|
17 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(2016, 504),
|
24 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='Resize', keep_ratio=True),
|
28 |
+
dict(type='ResizeToMultiple', size_divisor=14),
|
29 |
+
dict(type='RandomFlip'),
|
30 |
+
dict(type='Normalize', **img_norm_cfg),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img']),
|
33 |
+
])
|
34 |
+
]
|
35 |
+
data = dict(
|
36 |
+
samples_per_gpu=4,
|
37 |
+
workers_per_gpu=4,
|
38 |
+
train=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root=data_root,
|
41 |
+
img_dir='images/training',
|
42 |
+
ann_dir='annotations/training',
|
43 |
+
max_image_num=20210 // 16,
|
44 |
+
pipeline=train_pipeline),
|
45 |
+
val=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
data_root=data_root,
|
48 |
+
img_dir='images/validation',
|
49 |
+
ann_dir='annotations/validation',
|
50 |
+
pipeline=test_pipeline),
|
51 |
+
test=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
img_dir='images/validation',
|
55 |
+
ann_dir='annotations/validation',
|
56 |
+
pipeline=test_pipeline))
|
InternVL/segmentation/configs/_base_/datasets/cityscapes_1024x1024.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cityscapes.py'
|
2 |
+
img_norm_cfg = dict(
|
3 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
4 |
+
crop_size = (1024, 1024)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations'),
|
8 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
9 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
10 |
+
dict(type='RandomFlip', prob=0.5),
|
11 |
+
dict(type='PhotoMetricDistortion'),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
14 |
+
dict(type='DefaultFormatBundle'),
|
15 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
16 |
+
]
|
17 |
+
test_pipeline = [
|
18 |
+
dict(type='LoadImageFromFile'),
|
19 |
+
dict(
|
20 |
+
type='MultiScaleFlipAug',
|
21 |
+
img_scale=(2048, 1024),
|
22 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
23 |
+
flip=False,
|
24 |
+
transforms=[
|
25 |
+
dict(type='Resize', keep_ratio=True),
|
26 |
+
dict(type='RandomFlip'),
|
27 |
+
dict(type='Normalize', **img_norm_cfg),
|
28 |
+
dict(type='ImageToTensor', keys=['img']),
|
29 |
+
dict(type='Collect', keys=['img']),
|
30 |
+
])
|
31 |
+
]
|
32 |
+
data = dict(
|
33 |
+
train=dict(pipeline=train_pipeline),
|
34 |
+
val=dict(pipeline=test_pipeline),
|
35 |
+
test=dict(pipeline=test_pipeline))
|
InternVL/segmentation/configs/_base_/models/apcnet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='APCHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
pool_scales=(1, 2, 3, 6),
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/bisenetv1_r18-d32.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
backbone=dict(
|
6 |
+
type='BiSeNetV1',
|
7 |
+
in_channels=3,
|
8 |
+
context_channels=(128, 256, 512),
|
9 |
+
spatial_channels=(64, 64, 64, 128),
|
10 |
+
out_indices=(0, 1, 2),
|
11 |
+
out_channels=256,
|
12 |
+
backbone_cfg=dict(
|
13 |
+
type='ResNet',
|
14 |
+
in_channels=3,
|
15 |
+
depth=18,
|
16 |
+
num_stages=4,
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
dilations=(1, 1, 1, 1),
|
19 |
+
strides=(1, 2, 2, 2),
|
20 |
+
norm_cfg=norm_cfg,
|
21 |
+
norm_eval=False,
|
22 |
+
style='pytorch',
|
23 |
+
contract_dilation=True),
|
24 |
+
norm_cfg=norm_cfg,
|
25 |
+
align_corners=False,
|
26 |
+
init_cfg=None),
|
27 |
+
decode_head=dict(
|
28 |
+
type='FCNHead',
|
29 |
+
in_channels=256,
|
30 |
+
in_index=0,
|
31 |
+
channels=256,
|
32 |
+
num_convs=1,
|
33 |
+
concat_input=False,
|
34 |
+
dropout_ratio=0.1,
|
35 |
+
num_classes=19,
|
36 |
+
norm_cfg=norm_cfg,
|
37 |
+
align_corners=False,
|
38 |
+
loss_decode=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
40 |
+
auxiliary_head=[
|
41 |
+
dict(
|
42 |
+
type='FCNHead',
|
43 |
+
in_channels=128,
|
44 |
+
channels=64,
|
45 |
+
num_convs=1,
|
46 |
+
num_classes=19,
|
47 |
+
in_index=1,
|
48 |
+
norm_cfg=norm_cfg,
|
49 |
+
concat_input=False,
|
50 |
+
align_corners=False,
|
51 |
+
loss_decode=dict(
|
52 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
53 |
+
dict(
|
54 |
+
type='FCNHead',
|
55 |
+
in_channels=128,
|
56 |
+
channels=64,
|
57 |
+
num_convs=1,
|
58 |
+
num_classes=19,
|
59 |
+
in_index=2,
|
60 |
+
norm_cfg=norm_cfg,
|
61 |
+
concat_input=False,
|
62 |
+
align_corners=False,
|
63 |
+
loss_decode=dict(
|
64 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
65 |
+
],
|
66 |
+
# model training and testing settings
|
67 |
+
train_cfg=dict(),
|
68 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/danet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DAHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
pam_channels=64,
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=norm_cfg,
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/deeplabv3plus_r50-d8.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
dilations=(1, 12, 24, 36),
|
23 |
+
c1_in_channels=256,
|
24 |
+
c1_channels=48,
|
25 |
+
dropout_ratio=0.1,
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
+
auxiliary_head=dict(
|
32 |
+
type='FCNHead',
|
33 |
+
in_channels=1024,
|
34 |
+
in_index=2,
|
35 |
+
channels=256,
|
36 |
+
num_convs=1,
|
37 |
+
concat_input=False,
|
38 |
+
dropout_ratio=0.1,
|
39 |
+
num_classes=19,
|
40 |
+
norm_cfg=norm_cfg,
|
41 |
+
align_corners=False,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
+
# model training and testing settings
|
45 |
+
train_cfg=dict(),
|
46 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/dmnet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DMHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
filter_sizes=(1, 3, 5, 7),
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/encnet_r50-d8.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='EncHead',
|
19 |
+
in_channels=[512, 1024, 2048],
|
20 |
+
in_index=(1, 2, 3),
|
21 |
+
channels=512,
|
22 |
+
num_codes=32,
|
23 |
+
use_se_loss=True,
|
24 |
+
add_lateral=False,
|
25 |
+
dropout_ratio=0.1,
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
31 |
+
loss_se_decode=dict(
|
32 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
33 |
+
auxiliary_head=dict(
|
34 |
+
type='FCNHead',
|
35 |
+
in_channels=1024,
|
36 |
+
in_index=2,
|
37 |
+
channels=256,
|
38 |
+
num_convs=1,
|
39 |
+
concat_input=False,
|
40 |
+
dropout_ratio=0.1,
|
41 |
+
num_classes=19,
|
42 |
+
norm_cfg=norm_cfg,
|
43 |
+
align_corners=False,
|
44 |
+
loss_decode=dict(
|
45 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
46 |
+
# model training and testing settings
|
47 |
+
train_cfg=dict(),
|
48 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/erfnet_fcn.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained=None,
|
6 |
+
backbone=dict(
|
7 |
+
type='ERFNet',
|
8 |
+
in_channels=3,
|
9 |
+
enc_downsample_channels=(16, 64, 128),
|
10 |
+
enc_stage_non_bottlenecks=(5, 8),
|
11 |
+
enc_non_bottleneck_dilations=(2, 4, 8, 16),
|
12 |
+
enc_non_bottleneck_channels=(64, 128),
|
13 |
+
dec_upsample_channels=(64, 16),
|
14 |
+
dec_stages_non_bottleneck=(2, 2),
|
15 |
+
dec_non_bottleneck_channels=(64, 16),
|
16 |
+
dropout_ratio=0.1,
|
17 |
+
init_cfg=None),
|
18 |
+
decode_head=dict(
|
19 |
+
type='FCNHead',
|
20 |
+
in_channels=16,
|
21 |
+
channels=128,
|
22 |
+
num_convs=1,
|
23 |
+
concat_input=False,
|
24 |
+
dropout_ratio=0.1,
|
25 |
+
num_classes=19,
|
26 |
+
norm_cfg=norm_cfg,
|
27 |
+
align_corners=False,
|
28 |
+
loss_decode=dict(
|
29 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
30 |
+
# model training and testing settings
|
31 |
+
train_cfg=dict(),
|
32 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/fastfcn_r50-d32_jpu_psp.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
dilations=(1, 1, 2, 4),
|
11 |
+
strides=(1, 2, 2, 2),
|
12 |
+
out_indices=(1, 2, 3),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
neck=dict(
|
18 |
+
type='JPU',
|
19 |
+
in_channels=(512, 1024, 2048),
|
20 |
+
mid_channels=512,
|
21 |
+
start_level=0,
|
22 |
+
end_level=-1,
|
23 |
+
dilations=(1, 2, 4, 8),
|
24 |
+
align_corners=False,
|
25 |
+
norm_cfg=norm_cfg),
|
26 |
+
decode_head=dict(
|
27 |
+
type='PSPHead',
|
28 |
+
in_channels=2048,
|
29 |
+
in_index=2,
|
30 |
+
channels=512,
|
31 |
+
pool_scales=(1, 2, 3, 6),
|
32 |
+
dropout_ratio=0.1,
|
33 |
+
num_classes=19,
|
34 |
+
norm_cfg=norm_cfg,
|
35 |
+
align_corners=False,
|
36 |
+
loss_decode=dict(
|
37 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
38 |
+
auxiliary_head=dict(
|
39 |
+
type='FCNHead',
|
40 |
+
in_channels=1024,
|
41 |
+
in_index=1,
|
42 |
+
channels=256,
|
43 |
+
num_convs=1,
|
44 |
+
concat_input=False,
|
45 |
+
dropout_ratio=0.1,
|
46 |
+
num_classes=19,
|
47 |
+
norm_cfg=norm_cfg,
|
48 |
+
align_corners=False,
|
49 |
+
loss_decode=dict(
|
50 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
51 |
+
# model training and testing settings
|
52 |
+
train_cfg=dict(),
|
53 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/fcn_hr18.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://msra/hrnetv2_w18',
|
6 |
+
backbone=dict(
|
7 |
+
type='HRNet',
|
8 |
+
norm_cfg=norm_cfg,
|
9 |
+
norm_eval=False,
|
10 |
+
extra=dict(
|
11 |
+
stage1=dict(
|
12 |
+
num_modules=1,
|
13 |
+
num_branches=1,
|
14 |
+
block='BOTTLENECK',
|
15 |
+
num_blocks=(4, ),
|
16 |
+
num_channels=(64, )),
|
17 |
+
stage2=dict(
|
18 |
+
num_modules=1,
|
19 |
+
num_branches=2,
|
20 |
+
block='BASIC',
|
21 |
+
num_blocks=(4, 4),
|
22 |
+
num_channels=(18, 36)),
|
23 |
+
stage3=dict(
|
24 |
+
num_modules=4,
|
25 |
+
num_branches=3,
|
26 |
+
block='BASIC',
|
27 |
+
num_blocks=(4, 4, 4),
|
28 |
+
num_channels=(18, 36, 72)),
|
29 |
+
stage4=dict(
|
30 |
+
num_modules=3,
|
31 |
+
num_branches=4,
|
32 |
+
block='BASIC',
|
33 |
+
num_blocks=(4, 4, 4, 4),
|
34 |
+
num_channels=(18, 36, 72, 144)))),
|
35 |
+
decode_head=dict(
|
36 |
+
type='FCNHead',
|
37 |
+
in_channels=[18, 36, 72, 144],
|
38 |
+
in_index=(0, 1, 2, 3),
|
39 |
+
channels=sum([18, 36, 72, 144]),
|
40 |
+
input_transform='resize_concat',
|
41 |
+
kernel_size=1,
|
42 |
+
num_convs=1,
|
43 |
+
concat_input=False,
|
44 |
+
dropout_ratio=-1,
|
45 |
+
num_classes=19,
|
46 |
+
norm_cfg=norm_cfg,
|
47 |
+
align_corners=False,
|
48 |
+
loss_decode=dict(
|
49 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
50 |
+
# model training and testing settings
|
51 |
+
train_cfg=dict(),
|
52 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/fpn_r50.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 1, 1),
|
12 |
+
strides=(1, 2, 2, 2),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
neck=dict(
|
18 |
+
type='FPN',
|
19 |
+
in_channels=[256, 512, 1024, 2048],
|
20 |
+
out_channels=256,
|
21 |
+
num_outs=4),
|
22 |
+
decode_head=dict(
|
23 |
+
type='FPNHead',
|
24 |
+
in_channels=[256, 256, 256, 256],
|
25 |
+
in_index=[0, 1, 2, 3],
|
26 |
+
feature_strides=[4, 8, 16, 32],
|
27 |
+
channels=128,
|
28 |
+
dropout_ratio=0.1,
|
29 |
+
num_classes=19,
|
30 |
+
norm_cfg=norm_cfg,
|
31 |
+
align_corners=False,
|
32 |
+
loss_decode=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
34 |
+
# model training and testing settings
|
35 |
+
train_cfg=dict(),
|
36 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/isanet_r50-d8.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='ISAHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
isa_channels=256,
|
23 |
+
down_factor=(8, 8),
|
24 |
+
dropout_ratio=0.1,
|
25 |
+
num_classes=19,
|
26 |
+
norm_cfg=norm_cfg,
|
27 |
+
align_corners=False,
|
28 |
+
loss_decode=dict(
|
29 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
30 |
+
auxiliary_head=dict(
|
31 |
+
type='FCNHead',
|
32 |
+
in_channels=1024,
|
33 |
+
in_index=2,
|
34 |
+
channels=256,
|
35 |
+
num_convs=1,
|
36 |
+
concat_input=False,
|
37 |
+
dropout_ratio=0.1,
|
38 |
+
num_classes=19,
|
39 |
+
norm_cfg=norm_cfg,
|
40 |
+
align_corners=False,
|
41 |
+
loss_decode=dict(
|
42 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
43 |
+
# model training and testing settings
|
44 |
+
train_cfg=dict(),
|
45 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/lraspp_m-v3-d8.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
backbone=dict(
|
6 |
+
type='MobileNetV3',
|
7 |
+
arch='large',
|
8 |
+
out_indices=(1, 3, 16),
|
9 |
+
norm_cfg=norm_cfg),
|
10 |
+
decode_head=dict(
|
11 |
+
type='LRASPPHead',
|
12 |
+
in_channels=(16, 24, 960),
|
13 |
+
in_index=(0, 1, 2),
|
14 |
+
channels=128,
|
15 |
+
input_transform='multiple_select',
|
16 |
+
dropout_ratio=0.1,
|
17 |
+
num_classes=19,
|
18 |
+
norm_cfg=norm_cfg,
|
19 |
+
act_cfg=dict(type='ReLU'),
|
20 |
+
align_corners=False,
|
21 |
+
loss_decode=dict(
|
22 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
23 |
+
# model training and testing settings
|
24 |
+
train_cfg=dict(),
|
25 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/models/pointrend_r50.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='CascadeEncoderDecoder',
|
5 |
+
num_stages=2,
|
6 |
+
pretrained='open-mmlab://resnet50_v1c',
|
7 |
+
backbone=dict(
|
8 |
+
type='ResNetV1c',
|
9 |
+
depth=50,
|
10 |
+
num_stages=4,
|
11 |
+
out_indices=(0, 1, 2, 3),
|
12 |
+
dilations=(1, 1, 1, 1),
|
13 |
+
strides=(1, 2, 2, 2),
|
14 |
+
norm_cfg=norm_cfg,
|
15 |
+
norm_eval=False,
|
16 |
+
style='pytorch',
|
17 |
+
contract_dilation=True),
|
18 |
+
neck=dict(
|
19 |
+
type='FPN',
|
20 |
+
in_channels=[256, 512, 1024, 2048],
|
21 |
+
out_channels=256,
|
22 |
+
num_outs=4),
|
23 |
+
decode_head=[
|
24 |
+
dict(
|
25 |
+
type='FPNHead',
|
26 |
+
in_channels=[256, 256, 256, 256],
|
27 |
+
in_index=[0, 1, 2, 3],
|
28 |
+
feature_strides=[4, 8, 16, 32],
|
29 |
+
channels=128,
|
30 |
+
dropout_ratio=-1,
|
31 |
+
num_classes=19,
|
32 |
+
norm_cfg=norm_cfg,
|
33 |
+
align_corners=False,
|
34 |
+
loss_decode=dict(
|
35 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
36 |
+
dict(
|
37 |
+
type='PointHead',
|
38 |
+
in_channels=[256],
|
39 |
+
in_index=[0],
|
40 |
+
channels=256,
|
41 |
+
num_fcs=3,
|
42 |
+
coarse_pred_each_layer=True,
|
43 |
+
dropout_ratio=-1,
|
44 |
+
num_classes=19,
|
45 |
+
align_corners=False,
|
46 |
+
loss_decode=dict(
|
47 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
48 |
+
],
|
49 |
+
# model training and testing settings
|
50 |
+
train_cfg=dict(
|
51 |
+
num_points=2048, oversample_ratio=3, importance_sample_ratio=0.75),
|
52 |
+
test_cfg=dict(
|
53 |
+
mode='whole',
|
54 |
+
subdivision_steps=2,
|
55 |
+
subdivision_num_points=8196,
|
56 |
+
scale_factor=2))
|
InternVL/segmentation/configs/_base_/models/pspnet_unet_s5-d16.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained=None,
|
6 |
+
backbone=dict(
|
7 |
+
type='UNet',
|
8 |
+
in_channels=3,
|
9 |
+
base_channels=64,
|
10 |
+
num_stages=5,
|
11 |
+
strides=(1, 1, 1, 1, 1),
|
12 |
+
enc_num_convs=(2, 2, 2, 2, 2),
|
13 |
+
dec_num_convs=(2, 2, 2, 2),
|
14 |
+
downsamples=(True, True, True, True),
|
15 |
+
enc_dilations=(1, 1, 1, 1, 1),
|
16 |
+
dec_dilations=(1, 1, 1, 1),
|
17 |
+
with_cp=False,
|
18 |
+
conv_cfg=None,
|
19 |
+
norm_cfg=norm_cfg,
|
20 |
+
act_cfg=dict(type='ReLU'),
|
21 |
+
upsample_cfg=dict(type='InterpConv'),
|
22 |
+
norm_eval=False),
|
23 |
+
decode_head=dict(
|
24 |
+
type='PSPHead',
|
25 |
+
in_channels=64,
|
26 |
+
in_index=4,
|
27 |
+
channels=16,
|
28 |
+
pool_scales=(1, 2, 3, 6),
|
29 |
+
dropout_ratio=0.1,
|
30 |
+
num_classes=2,
|
31 |
+
norm_cfg=norm_cfg,
|
32 |
+
align_corners=False,
|
33 |
+
loss_decode=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
35 |
+
auxiliary_head=dict(
|
36 |
+
type='FCNHead',
|
37 |
+
in_channels=128,
|
38 |
+
in_index=3,
|
39 |
+
channels=64,
|
40 |
+
num_convs=1,
|
41 |
+
concat_input=False,
|
42 |
+
dropout_ratio=0.1,
|
43 |
+
num_classes=2,
|
44 |
+
norm_cfg=norm_cfg,
|
45 |
+
align_corners=False,
|
46 |
+
loss_decode=dict(
|
47 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
48 |
+
# model training and testing settings
|
49 |
+
train_cfg=dict(),
|
50 |
+
test_cfg=dict(mode='slide', crop_size=256, stride=170))
|
InternVL/segmentation/configs/_base_/models/upernet_r50.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 1, 1),
|
12 |
+
strides=(1, 2, 2, 2),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='UPerHead',
|
19 |
+
in_channels=[256, 512, 1024, 2048],
|
20 |
+
in_index=[0, 1, 2, 3],
|
21 |
+
pool_scales=(1, 2, 3, 6),
|
22 |
+
channels=512,
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=norm_cfg,
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
InternVL/segmentation/configs/_base_/schedules/schedule_10k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=10000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=1000)
|
9 |
+
evaluation = dict(interval=1000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/_base_/schedules/schedule_160k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=16000)
|
9 |
+
evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/_base_/schedules/schedule_20k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=20000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=2000)
|
9 |
+
evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/_base_/schedules/schedule_320k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=320000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=32000)
|
9 |
+
evaluation = dict(interval=32000, metric='mIoU')
|
InternVL/segmentation/configs/_base_/schedules/schedule_40k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=40000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=4000)
|
9 |
+
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/_base_/schedules/schedule_5k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=5000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=1000)
|
9 |
+
evaluation = dict(interval=1000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/_base_/schedules/schedule_80k.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
3 |
+
optimizer_config = dict()
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
6 |
+
# runtime settings
|
7 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
8 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
9 |
+
evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)
|
InternVL/segmentation/configs/intern_vit_6b/few_shot/linear_intern_vit_6b_504_10k_ade20k_bs16_lr4e-5_1of8.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
_base_ = [
|
8 |
+
'../../_base_/models/segmenter_vit-b16_mask.py',
|
9 |
+
'../../_base_/datasets/ade20k_504x504_1of8.py',
|
10 |
+
'../../_base_/default_runtime.py',
|
11 |
+
'../../_base_/schedules/schedule_10k.py'
|
12 |
+
]
|
13 |
+
deepspeed = False
|
14 |
+
deepspeed_config = 'zero_configs/adam_zero1_bf16.json'
|
15 |
+
pretrained = './pretrained/intern_vit_6b_224px.pth'
|
16 |
+
model = dict(
|
17 |
+
pretrained=None,
|
18 |
+
backbone=dict(
|
19 |
+
_delete_=True,
|
20 |
+
type='InternViT6B',
|
21 |
+
pretrain_size=224,
|
22 |
+
img_size=504,
|
23 |
+
patch_size=14,
|
24 |
+
embed_dim=3200,
|
25 |
+
depth=48,
|
26 |
+
num_heads=25,
|
27 |
+
mlp_ratio=4.,
|
28 |
+
qkv_bias=False,
|
29 |
+
drop_path_rate=0.4,
|
30 |
+
init_values=0.1,
|
31 |
+
with_cp=True,
|
32 |
+
use_flash_attn=True,
|
33 |
+
qk_normalization=True,
|
34 |
+
layerscale_force_fp32=False,
|
35 |
+
freeze_vit=False,
|
36 |
+
out_indices=[47],
|
37 |
+
pretrained=pretrained),
|
38 |
+
decode_head=dict(
|
39 |
+
_delete_=True,
|
40 |
+
type='FCNHead',
|
41 |
+
in_channels=3200,
|
42 |
+
channels=3200,
|
43 |
+
num_convs=0,
|
44 |
+
dropout_ratio=0.0,
|
45 |
+
concat_input=False,
|
46 |
+
num_classes=150,
|
47 |
+
with_norm=True,
|
48 |
+
loss_decode=dict(
|
49 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
50 |
+
test_cfg=dict(mode='slide', crop_size=(504, 504), stride=(322, 322))
|
51 |
+
)
|
52 |
+
optimizer = dict(_delete_=True, type='AdamW', lr=4e-5, betas=(0.9, 0.999), weight_decay=0.05,
|
53 |
+
constructor='CustomLayerDecayOptimizerConstructor',
|
54 |
+
paramwise_cfg=dict(num_layers=48, layer_decay_rate=0.95))
|
55 |
+
lr_config = dict(_delete_=True, policy='poly',
|
56 |
+
warmup='linear',
|
57 |
+
warmup_iters=200,
|
58 |
+
warmup_ratio=1e-6,
|
59 |
+
power=1.0, min_lr=0.0, by_epoch=False)
|
60 |
+
# By default, models are trained on 8 GPUs with 2 images per GPU
|
61 |
+
data = dict(samples_per_gpu=2)
|
62 |
+
runner = dict(type='IterBasedRunner')
|
63 |
+
if deepspeed:
|
64 |
+
checkpoint_config = dict(deepspeed=deepspeed, by_epoch=False, interval=1000, max_keep_ckpts=2)
|
65 |
+
else:
|
66 |
+
checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=2)
|
67 |
+
evaluation = dict(interval=1000, metric='mIoU', save_best='auto')
|
68 |
+
custom_hooks = [
|
69 |
+
dict(
|
70 |
+
type='ToBFloat16Hook',
|
71 |
+
priority=49),
|
72 |
+
]
|
InternVL/segmentation/configs/intern_vit_6b/few_shot/linear_intern_vit_6b_504_20k_ade20k_bs16_lr4e-5_1of4.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
_base_ = [
|
8 |
+
'../../_base_/models/segmenter_vit-b16_mask.py',
|
9 |
+
'../../_base_/datasets/ade20k_504x504_1of4.py',
|
10 |
+
'../../_base_/default_runtime.py',
|
11 |
+
'../../_base_/schedules/schedule_20k.py'
|
12 |
+
]
|
13 |
+
deepspeed = False
|
14 |
+
deepspeed_config = 'zero_configs/adam_zero1_bf16.json'
|
15 |
+
pretrained = './pretrained/intern_vit_6b_224px.pth'
|
16 |
+
model = dict(
|
17 |
+
pretrained=None,
|
18 |
+
backbone=dict(
|
19 |
+
_delete_=True,
|
20 |
+
type='InternViT6B',
|
21 |
+
pretrain_size=224,
|
22 |
+
img_size=504,
|
23 |
+
patch_size=14,
|
24 |
+
embed_dim=3200,
|
25 |
+
depth=48,
|
26 |
+
num_heads=25,
|
27 |
+
mlp_ratio=4.,
|
28 |
+
qkv_bias=False,
|
29 |
+
drop_path_rate=0.4,
|
30 |
+
init_values=0.1,
|
31 |
+
with_cp=True,
|
32 |
+
use_flash_attn=True,
|
33 |
+
qk_normalization=True,
|
34 |
+
layerscale_force_fp32=False,
|
35 |
+
freeze_vit=False,
|
36 |
+
out_indices=[47],
|
37 |
+
pretrained=pretrained),
|
38 |
+
decode_head=dict(
|
39 |
+
_delete_=True,
|
40 |
+
type='FCNHead',
|
41 |
+
in_channels=3200,
|
42 |
+
channels=3200,
|
43 |
+
num_convs=0,
|
44 |
+
dropout_ratio=0.0,
|
45 |
+
concat_input=False,
|
46 |
+
num_classes=150,
|
47 |
+
with_norm=True,
|
48 |
+
loss_decode=dict(
|
49 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
50 |
+
test_cfg=dict(mode='slide', crop_size=(504, 504), stride=(322, 322))
|
51 |
+
)
|
52 |
+
optimizer = dict(_delete_=True, type='AdamW', lr=4e-5, betas=(0.9, 0.999), weight_decay=0.05,
|
53 |
+
constructor='CustomLayerDecayOptimizerConstructor',
|
54 |
+
paramwise_cfg=dict(num_layers=48, layer_decay_rate=0.95))
|
55 |
+
lr_config = dict(_delete_=True, policy='poly',
|
56 |
+
warmup='linear',
|
57 |
+
warmup_iters=400,
|
58 |
+
warmup_ratio=1e-6,
|
59 |
+
power=1.0, min_lr=0.0, by_epoch=False)
|
60 |
+
# By default, models are trained on 8 GPUs with 2 images per GPU
|
61 |
+
data = dict(samples_per_gpu=2)
|
62 |
+
runner = dict(type='IterBasedRunner')
|
63 |
+
if deepspeed:
|
64 |
+
checkpoint_config = dict(deepspeed=deepspeed, by_epoch=False, interval=1000, max_keep_ckpts=2)
|
65 |
+
else:
|
66 |
+
checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=2)
|
67 |
+
evaluation = dict(interval=1000, metric='mIoU', save_best='auto')
|
68 |
+
custom_hooks = [
|
69 |
+
dict(
|
70 |
+
type='ToBFloat16Hook',
|
71 |
+
priority=49),
|
72 |
+
]
|