""" train.py - GLaMM Model Training on Mixed Datasets Trains the GLaMM model using Caption, Region, and Segmentation datasets with a random sampling approach. This method is crucial for developing a versatile model capable of handling diverse applications effectively. """ import os import sys import time import tqdm import random import torch import argparse import deepspeed import numpy as np import transformers from functools import partial from torch.utils.data import ConcatDataset from peft import LoraConfig, get_peft_model from torch.utils.tensorboard import SummaryWriter from model.GLaMM import GLaMMForCausalLM from model.llava import conversation as conversation_lib from dataset.dataset import custom_collate_fn, HybridSegDataset, HybridRegDataset, HybridCapDataset from tools.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, AverageMeter, ProgressMeter, dict_to_cuda, Summary, intersectionAndUnionGPU) from dataset.segm_datasets.RefCOCO_Segm_ds import ReferSegmDataset from dataset.region_datasets.RefCOCO_VG_Region_ds import RefCocoGRegDataset, VisualGenomeRegDataset from dataset.caption_datasets.COCO_Caption_ds import CocoCapDataset from dataset.gcg_datasets.GranDf_gcg_ds import OpenPsgGCGDataset, Flickr30kGCGDataset, RefCOCOgGCGDataset def parse_args(args): parser = argparse.ArgumentParser(description="GLaMM Model Training") # Model-specific settings parser.add_argument("--version", default="MBZUAI/GLaMM-GranD-Pretrained") parser.add_argument("--vision_pretrained", default="./checkpoints/sam_vit_h_4b8939.pth", type=str) parser.add_argument("--vision-tower", default="openai/clip-vit-large-patch14-336", type=str) parser.add_argument("--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"]) parser.add_argument("--tune_mm_mlp_adapter", action="store_true") parser.add_argument("--freeze_mm_mlp_adapter", action="store_true") parser.add_argument("--mm_use_im_start_end", action="store_true", default=True) parser.add_argument("--out_dim", default=256, type=int) parser.add_argument("--image_size", default=1024, type=int, help="Image size for grounding image encoder") parser.add_argument("--model_max_length", default=1536, type=int) parser.add_argument("--lora_target_modules", default="q_proj,v_proj", type=str) parser.add_argument("--with_region", action="store_true", default=True) parser.add_argument("--mm_vision_select_layer", default=-2, type=int) parser.add_argument("--pretrain_mm_mlp_adapter", default="", type=str) parser.add_argument("--precision", default='bf16', type=str) # Dataset settings parser.add_argument("--use_cap_data", action="store_true", help="Use caption data") parser.add_argument("--use_reg_data", action="store_true", help="Use region data") parser.add_argument("--use_segm_data", action="store_true", help="Use segmentation data") parser.add_argument("--weight_cap", default=0.15, type=float, help="Sampling weight for caption data") parser.add_argument("--weight_reg", default=0.40, type=float, help="Sampling weight for region data") parser.add_argument("--weight_segm", default=0.45, type=float, help="Sampling weight for segmentation data") parser.add_argument("--dataset_dir", default="./data", type=str) parser.add_argument("--seg_dataset", default="Semantic_Segm||Refer_Segm||RefCoco_GCG||PSG_GCG||Flickr_GCG||GranDf_GCG", type=str, help="Choose from: Semantic_Segm, Refer_Segm, RefCoco_GCG, GranDf_GCG, PSG_GCG, Flickr_GCG, GrandRefer_Segm") parser.add_argument("--segm_sample_rates", default="5,4,3,3,3,1", type=str) parser.add_argument("--reg_dataset", default="RefCoco_Reg||RefCocoG_Reg||RefCocoP_Reg||VisGen_Reg", type=str, help="Choose from: RefCoco_Reg, RefCocoG_Reg, RefCocoP_Reg, VisGen_Reg, Flickr_Reg, GrandRefer_Reg") parser.add_argument("--reg_sample_rates", default="1,1,1,1", type=str) parser.add_argument("--cap_dataset", default="CocoCap||LLaVaInstruct", type=str, help="Choose from: CocoCap, LLaVaInstruct, GrandCaptionDataset") parser.add_argument("--cap_sample_rates", default="1,1", type=str) parser.add_argument("--semantic_segm_data", default="ade20k||cocostuff||pascal_part||paco_lvis||mapillary", type=str) parser.add_argument("--refer_segm_data", default="refcoco||refcoco+||refcocog||refclef", type=str) parser.add_argument("--vqa_data", default="llava_instruct_150k", type=str) parser.add_argument("--num_classes_per_sample", default=3, type=int) # Training settings parser.add_argument("--pretrained", action="store_true") parser.add_argument("--resume", default="", type=str) parser.add_argument("--auto_resume", action="store_true") parser.add_argument("--weight", default="", type=str) parser.add_argument("--lr", default=0.0003, type=float) parser.add_argument("--epochs", default=10, type=int) parser.add_argument("--steps_per_epoch", default=500, type=int) parser.add_argument("--batch_size", default=2, type=int, help="batch size per device per step") parser.add_argument("--grad_accumulation_steps", default=10, type=int) parser.add_argument("--val_batch_size", default=1, type=int) parser.add_argument("--workers", default=2, type=int) parser.add_argument("--lora_r", default=8, type=int) parser.add_argument("--lora_alpha", default=16, type=int) parser.add_argument("--lora_dropout", default=0.05, type=float) parser.add_argument("--ce_loss_weight", default=1.0, type=float) parser.add_argument("--dice_loss_weight", default=0.5, type=float) parser.add_argument("--bce_loss_weight", default=2.0, type=float) parser.add_argument("--beta1", default=0.9, type=float) parser.add_argument("--beta2", default=0.95, type=float) parser.add_argument("--gradient_checkpointing", action="store_true", default=True) parser.add_argument("--train_mask_decoder", action="store_true", default=True) parser.add_argument("--use_mm_start_end", action="store_true", default=True) parser.add_argument("--print_freq", default=1, type=int) parser.add_argument("--start_epoch", default=0, type=int) parser.add_argument("--local_rank", default=0, type=int, help="node rank") # Evaluation settings parser.add_argument("--val_dataset", default="CocoCapVal|RefCOCOgRegVal|RefCOCOgSegmVal", type=str, help="Choose from: CocoCapVal, RefCOCOgRegVal, VisGenomeRegVal, RefCOCOgSegmVal, PsgGCGVal, " "RefCocoGCGVal, FlickrGCGVal") parser.add_argument("--mask_validation", action="store_true") parser.add_argument("--no_eval", action="store_true") parser.add_argument("--eval_only", action="store_true") # Experiment settings parser.add_argument("--log_base_dir", default="./output", type=str) parser.add_argument("--exp_name", default="GlamFinetuneOS", type=str) return parser.parse_args(args) def initialize_environment(args): """ Set up logging and model directories. """ args.log_dir = os.path.join(args.log_base_dir, args.exp_name) if args.local_rank == 0: os.makedirs(args.log_dir, exist_ok=True) return SummaryWriter(args.log_dir) return None def setup_tokenizer_and_special_tokens(args): """ Load tokenizer and add special tokens. """ tokenizer = transformers.AutoTokenizer.from_pretrained( args.version, model_max_length=args.model_max_length, padding_side="right", use_fast=False ) print('\033[92m' + "---- Initialized tokenizer from: {} ----".format(args.version) + '\033[0m') tokenizer.pad_token = tokenizer.unk_token if not args.pretrained: if args.use_mm_start_end: tokenizer.add_tokens( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True ) # modifications specific for regions reg_tokens = ['', ''] # Adding special tokens for pixel grounding segmentation_tokens = ['[SEG]'] # Adding tokens for GCG phrase_tokens = ['

', '

'] special_tokens = reg_tokens + segmentation_tokens + phrase_tokens tokenizer.add_tokens(special_tokens, special_tokens=True) args.bbox_token_idx = tokenizer("", add_special_tokens=False).input_ids[0] args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0] args.bop_token_idx = tokenizer("

", add_special_tokens=False).input_ids[0] args.eop_token_idx = tokenizer("

", add_special_tokens=False).input_ids[0] return tokenizer def initialize_model(args, tokenizer): """ Initialize the GLaMM model. """ model_args = {k: getattr(args, k) for k in ["train_mask_decoder", "out_dim", "ce_loss_weight", "dice_loss_weight", "bce_loss_weight", "seg_token_idx", "vision_pretrained", "vision_tower", "use_mm_start_end", "mm_vision_select_layer", "pretrain_mm_mlp_adapter", "tune_mm_mlp_adapter", "freeze_mm_mlp_adapter", "mm_use_im_start_end", "with_region", "bbox_token_idx", "eop_token_idx", "bop_token_idx"]} model_args["num_level_reg_features"] = 4 model = GLaMMForCausalLM.from_pretrained( args.version, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, **model_args ) print('\033[92m' + "---- Initialized model from: {} ----".format(args.version) + '\033[0m') # Configure model tokens model.config.eos_token_id = tokenizer.eos_token_id model.config.bos_token_id = tokenizer.bos_token_id model.config.pad_token_id = tokenizer.pad_token_id return model def prepare_model_for_training(model, tokenizer, args): # Enable input gradients model.enable_input_require_grads() model.gradient_checkpointing_enable() # Initialize vision tower print( '\033[92m' + "---- Initialized Global Image Encoder (vision tower) from: {} ----".format( args.vision_tower ) + '\033[0m' ) model.get_model().initialize_vision_modules(model.get_model().config) vision_tower = model.get_model().get_vision_tower() vision_tower.to(dtype=torch.bfloat16, device=args.local_rank) # Initialize GLaMM model and adjust requires_grad if not args.pretrained: model.get_model().initialize_glamm_model(model.get_model().config) else: for param in model.get_model().grounding_encoder.parameters(): param.requires_grad = False if model.get_model().config.train_mask_decoder: model.get_model().grounding_encoder.mask_decoder.train() for param in model.get_model().grounding_encoder.mask_decoder.parameters(): param.requires_grad = True # Projection layer model.get_model().text_hidden_fcs.train() for param in model.get_model().text_hidden_fcs.parameters(): param.requires_grad = True # Set requires_grad for vision tower and mm projector for p in vision_tower.parameters(): p.requires_grad = False for p in model.get_model().mm_projector.parameters(): p.requires_grad = False # Set requires_grad based on LoRA training lora_r = args.lora_r if lora_r == 0: for p in model.get_model().layers.parameters(): p.requires_grad = True for p in model.get_model().mm_projector.parameters(): p.requires_grad = True # Configure conversation library conversation_lib.default_conversation = conversation_lib.conv_templates[args.conv_type] # Configure LoRA if applicable if lora_r > 0: lora_config = setup_lora_config(model, args) model = get_peft_model(model, lora_config) # Resize token embeddings model.resize_token_embeddings(len(tokenizer)) # Make certain modules trainable set_trainable_modules(model) def setup_lora_config(model, args): """ Configure LoRA settings for the model. """ def find_proj_layers(model, target_modules): """ Identify projection layers in the model for LoRA adaptation. """ linear_cls = torch.nn.Linear lora_module_names = set() for name, module in model.named_modules(): if (isinstance(module, linear_cls) and all( x not in name for x in ["grounding_encoder", "vision_tower", "mm_projector", "text_hidden_fcs"] ) and any(x in name for x in target_modules)): lora_module_names.add(name) return sorted(list(lora_module_names)) # Extracting LoRA target modules lora_target_modules = args.lora_target_modules.split(",") lora_module_names = find_proj_layers(model, lora_target_modules) # Configuring LoRA lora_config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=lora_module_names, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM" ) return lora_config def set_trainable_modules(model): """ Make specified modules in the model trainable. """ trainable_modules = ["lm_head", "embed_tokens", "mask_decoder", "text_hidden_fcs", "region_encoder"] for name, param in model.named_parameters(): if any(module in name for module in trainable_modules): print(f"Making trainable: {name}, Shape: {param.shape}") param.requires_grad = True def count_parameters(model): total_params = sum(p.numel() for p in model.parameters()) trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('\033[92m' + "---- Total parameters: ----{}".format(total_params) + '\033[0m') print('\033[92m' + "---- Trainable parameters: ----{}".format(trainable_params) + '\033[0m') count_parameters(model) def initialize_datasets_and_loaders(args, tokenizer): world_size = torch.cuda.device_count() args.distributed = world_size > 1 # Common dataset arguments common_ds_args = {"dataset_dir": args.dataset_dir, "tokenizer": tokenizer, "global_image_encoder": args.vision_tower, "epoch_samples": args.batch_size * args.grad_accumulation_steps * args.steps_per_epoch * world_size, "precision": args.precision, "image_size": args.image_size, "num_classes_per_sample": args.num_classes_per_sample} # Training datasets cap_train_dataset = HybridCapDataset( **common_ds_args, dataset=args.cap_dataset, sample_rate=[float(x) for x in args.cap_sample_rates.split(",")], batch_size=args.batch_size, ) if args.use_cap_data else None reg_train_dataset = HybridRegDataset( **common_ds_args, dataset=args.reg_dataset, sample_rate=[float(x) for x in args.reg_sample_rates.split(",")], batch_size=args.batch_size, ) if args.use_reg_data else None seg_train_dataset = HybridSegDataset( **common_ds_args, dataset=args.seg_dataset, sample_rate=[float(x) for x in args.segm_sample_rates.split(",")], semantic_segm_data=args.semantic_segm_data, refer_segm_data=args.refer_segm_data, batch_size=args.batch_size, ) if args.use_segm_data else None # Validation datasets val_datasets = [] if not args.no_eval: val_dataset_classes = {'CocoCapVal': CocoCapDataset, 'RefCOCOgRegVal': RefCocoGRegDataset, 'VisGenomeRegVal': VisualGenomeRegDataset, 'RefCOCOgSegmVal': ReferSegmDataset, 'PsgGCGVal': OpenPsgGCGDataset, 'RefCocoGCGVal': RefCOCOgGCGDataset, 'FlickrGCGVal': Flickr30kGCGDataset, } for val_dataset_name in args.val_dataset.split('|'): val_dataset_class = val_dataset_classes.get(val_dataset_name) if val_dataset_class: if val_dataset_class == ReferSegmDataset: # Modify this if other datasets in refer_segm_data need to be included in val refer_segm_data = 'refcocog' all_datasets = refer_segm_data.split("||") for d in all_datasets: val_dataset_class = val_dataset_class( **common_ds_args, validation=True, refer_segm_data=d, split='val' ) val_dataset_class._set_len(len(val_dataset_class.refer_segm_data[d]['images'])) val_datasets.append(val_dataset_class) else: val_datasets.append(val_dataset_class(**common_ds_args, validation=True)) return cap_train_dataset, reg_train_dataset, seg_train_dataset, val_datasets def setup_data_loaders(args, cap_train_dataset, reg_train_dataset, seg_train_dataset, val_datasets, tokenizer): sampler_args = {"shuffle": False, "drop_last": False} train_loader_args = {"batch_size": args.batch_size, "shuffle": False, "num_workers": args.workers, "pin_memory": False} val_loader_args = {"batch_size": args.val_batch_size, "shuffle": False, "num_workers": args.workers, "pin_memory": False} collate_fn_args_train = partial( custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank, inference=False ) inference_mode = args.mask_validation collate_fn_args_val = partial( custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank, inference=inference_mode ) # Training loaders cap_train_loader = torch.utils.data.DataLoader( cap_train_dataset, sampler=torch.utils.data.distributed.DistributedSampler( cap_train_dataset, **sampler_args ), collate_fn=collate_fn_args_train, **train_loader_args ) if cap_train_dataset is not None else None reg_train_loader = torch.utils.data.DataLoader( reg_train_dataset, sampler=torch.utils.data.distributed.DistributedSampler( reg_train_dataset, **sampler_args ), collate_fn=collate_fn_args_train, **train_loader_args ) if reg_train_dataset is not None else None seg_train_loader = torch.utils.data.DataLoader( seg_train_dataset, sampler=torch.utils.data.distributed.DistributedSampler( seg_train_dataset, **sampler_args ), collate_fn=collate_fn_args_train, **train_loader_args ) if seg_train_dataset is not None else None # Validation loader val_loader = None if val_datasets: combined_val_datasets = ConcatDataset(val_datasets) val_loader = torch.utils.data.DataLoader( combined_val_datasets, **val_loader_args, collate_fn=collate_fn_args_val, sampler=torch.utils.data.distributed.DistributedSampler(combined_val_datasets, **sampler_args), ) return cap_train_loader, reg_train_loader, seg_train_loader, val_loader def initialize_deepspeed(model, tokenizer, args): ds_config = {"train_micro_batch_size_per_gpu": args.batch_size, "gradient_accumulation_steps": args.grad_accumulation_steps, "optimizer": {"type": "AdamW", "params": {"lr": args.lr, "weight_decay": 0.0, "betas": (args.beta1, args.beta2)}}, "scheduler": {"type": "WarmupDecayLR", "params": {"total_num_steps": args.epochs * args.steps_per_epoch, "warmup_min_lr": 0, "warmup_max_lr": args.lr, "warmup_num_steps": 100, "warmup_type": "linear"}}, "fp16": {"enabled": args.precision == "fp16"}, "bf16": {"enabled": args.precision == "bf16"}, "gradient_clipping": 1.0, "zero_optimization": {"stage": 2, "contiguous_gradients": True, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 5e8, "allgather_bucket_size": 5e8}, } model_engine, optimizer, _, scheduler = deepspeed.initialize( model=model, model_parameters=model.parameters(), collate_fn=partial( custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank ), config=ds_config ) return model_engine, optimizer, scheduler def resume_training_from_checkpoint(model_engine, args): if args.auto_resume and not args.resume: resume = os.path.join(args.log_dir, "ckpt_model") if os.path.exists(resume): args.resume = resume if args.resume: load_path, client_state = model_engine.load_checkpoint(args.resume) with open(os.path.join(args.resume, "latest"), "r") as f: ckpt_dir = f.readlines()[0].strip() args.start_epoch = int(ckpt_dir.replace("global_step", "")) // args.steps_per_epoch print(f"Resume training from {args.resume}, start from epoch {args.start_epoch}") def main(args): tokenizer = setup_tokenizer_and_special_tokens(args) model = initialize_model(args, tokenizer) prepare_model_for_training(model, tokenizer, args) model_engine, optimizer, scheduler = initialize_deepspeed(model, tokenizer, args) resume_training_from_checkpoint(model_engine, args) cap_train_dataset, reg_train_dataset, seg_train_dataset, val_datasets = ( initialize_datasets_and_loaders(args, tokenizer)) cap_train_loader, reg_train_loader, seg_train_loader, val_loader = ( setup_data_loaders(args, cap_train_dataset, reg_train_dataset, seg_train_dataset, val_datasets, tokenizer)) # Determine active datasets and their weights active_dataloaders = [] weights = [] if args.use_cap_data: active_dataloaders.append(('cap', cap_train_loader)) weights.append(args.weight_cap) if args.use_reg_data: active_dataloaders.append(('reg', reg_train_loader)) weights.append(args.weight_reg) if args.use_segm_data: active_dataloaders.append(('seg', seg_train_loader)) weights.append(args.weight_segm) # Assert that at least one dataset is active assert active_dataloaders, "Error: At least one dataset (segm, reg, or cap) must be active." dataset_iters = {'cap': iter(cap_train_loader) if args.use_cap_data else None, 'reg': iter(reg_train_loader) if args.use_reg_data else None, 'seg': iter(seg_train_loader) if args.use_segm_data else None, } writer = initialize_environment(args) if args.eval_only: cur_val_loss = validate_model_performance(val_loader, model_engine, 0, writer, args)[0] exit() epoch_seeds = [random.randint(0, 100000) for _ in range(args.epochs)] dataset_choices = [idx for idx, _ in enumerate(active_dataloaders)] best_giou, best_ciou, best_val_loss = 0.0, 0.0, np.inf for epoch in range(args.start_epoch, args.epochs): random.seed(epoch_seeds[epoch]) step_choices = random.choices(dataset_choices, weights=weights, k=args.steps_per_epoch) dataset_iters = train( active_dataloaders, model_engine, epoch, scheduler, writer, dataset_iters, args, step_choices ) if args.mask_validation: giou, ciou = validate_model_performance(val_loader, model_engine, epoch, writer, args) is_best = giou > best_giou best_giou = max(giou, best_giou) best_ciou = ciou if is_best else best_ciou if args.local_rank == 0: # Log the progress print(f"Epoch: {epoch}, giou: {giou}, ciou: {ciou}, best_giou: {best_giou}, best_ciou: {best_ciou}") save_checkpoint(model_engine, args, epoch, 'giou-ciou', f"{giou:.4f}-{ciou:.4f}", is_best) else: cur_val_loss = validate_model_performance(val_loader, model_engine, epoch, writer, args) is_best = cur_val_loss < best_val_loss best_val_loss = min(cur_val_loss, best_val_loss) if args.local_rank == 0: # Log the progress print(f"Epoch: {epoch}, Current Validation Loss: {cur_val_loss:.4f}, Best Validation Loss: {best_val_loss:}") save_checkpoint(model_engine, args, epoch, 'loss', f"{cur_val_loss:.4f}", is_best) def save_checkpoint(model_engine, args, epoch, metric_name, metric_value, is_best): """ Saves the model checkpoint. """ # If the checkpoint is the best, save it in ckpt_model_best, else in ckpt_model_last_epoch save_dir_name = "ckpt_model_best" if is_best else "ckpt_model_last_epoch" save_dir = os.path.join(args.log_dir, save_dir_name) # Ensure the directory exists if args.local_rank == 0: os.makedirs(save_dir, exist_ok=True) ckpt_filename = f"epoch_{epoch}_val_{metric_name}_{metric_value}.pth" torch.save({"epoch": epoch, f"val_{metric_name}": metric_value}, os.path.join(save_dir, ckpt_filename)) torch.distributed.barrier() model_engine.save_checkpoint(save_dir) def train(active_datasets, model, epoch, scheduler, writer, dataset_iters, args, step_choices): """Main training loop.""" def get_next_input(iterator, data_loader): """Retrieve next input from the iterator, or reinitialize if necessary.""" try: return next(iterator), iterator except StopIteration: new_iterator = iter(data_loader) return next(new_iterator), new_iterator def log_progress(): """Log training progress.""" if global_step % args.print_freq == 0: if args.distributed: for tracker in trackers.values(): tracker.all_reduce() if args.local_rank == 0: progress.display(global_step + 1) for key, tracker in trackers.items(): writer.add_scalar(f"train/{key}", tracker.avg, global_step) writer.add_scalar("metrics/total_secs_per_batch", batch_time.avg, global_step) writer.add_scalar("metrics/data_secs_per_batch", data_time.avg, global_step) for tracker in trackers.values(): tracker.reset() batch_time = AverageMeter("Time", ":.4f") data_time = AverageMeter("Data", ":.4f") trackers = {"loss": AverageMeter("Loss", ":.4f"), "ce_loss": AverageMeter("CeLoss", ":.4f"), "mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"), "mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"), "mask_loss": AverageMeter("MaskLoss", ":.4f")} progress = ProgressMeter(args.steps_per_epoch, list(trackers.values()), prefix=f"Epoch: [{epoch}]") model.train() end = time.time() for global_step in range(args.steps_per_epoch): for _ in range(args.grad_accumulation_steps): # Select data loader based on step choice dataset_type, data_loader = active_datasets[step_choices[global_step]] data_batch, new_iter = get_next_input(dataset_iters[dataset_type], data_loader) dataset_iters[dataset_type] = new_iter data_time.update(time.time() - end) # Prepare data and convert relevant tensors to bfloat16 data_batch = dict_to_cuda(data_batch) for key in ["global_enc_images", "grounding_enc_images"]: if data_batch[key] is not None: data_batch[key] = data_batch[key].bfloat16() output_dict = model(**data_batch) # Update training metrics for key, tracker in trackers.items(): if key in output_dict: tracker.update(output_dict[key].item(), data_batch["global_enc_images"].size(0)) model.backward(output_dict["loss"]) model.step() batch_time.update(time.time() - end) end = time.time() log_progress() if global_step != 0: curr_lr = scheduler.get_last_lr() if args.local_rank == 0: writer.add_scalar("train/lr", curr_lr[0], global_step) return dataset_iters def validate_model_performance(validation_loader, training_model, current_epoch, tensorboard_writer, args): if args.mask_validation: # For use with only segmentation/GCG type datasets trackers = {"intersection": AverageMeter("Intersec", ":.4f", Summary.SUM), "union": AverageMeter("Union", ":.4f", Summary.SUM), "gIoU": AverageMeter("gIoU", ":.4f", Summary.SUM)} training_model.eval() for data_batch in tqdm.tqdm(validation_loader): # Prepare data and convert relevant tensors to bfloat16 data_batch = dict_to_cuda(data_batch) for key in ["global_enc_images", "grounding_enc_images"]: data_batch[key] = data_batch[key].bfloat16() torch.cuda.empty_cache() # Model inference without gradient tracking with torch.no_grad(): results = training_model(**data_batch) predictions = results["pred_masks"] gt_masks = results["gt_masks"][0].int() # Note: An error at this line may suggest that the dataset used for validation does not support # segmentation tasks. Ensure that the dataset is appropriate for segmentation analysis. predicted_masks = (predictions[0] > 0).int() assert len(predictions) == 1 intersection, union, accuracy_iou = 0.0, 0.0, 0.0 for target, prediction in zip(gt_masks, predicted_masks): intersect, union_, _ = intersectionAndUnionGPU( prediction.contiguous().clone(), target.contiguous(), 2, ignore_index=255 ) intersection += intersect union += union_ accuracy_iou += intersect / (union_ + 1e-5) # handles no-object targets accuracy_iou[union_ == 0] += 1.0 intersection, union = intersection.cpu().numpy(), union.cpu().numpy() accuracy_iou = accuracy_iou.cpu().numpy() / gt_masks.shape[0] trackers["intersection"].update(intersection) trackers["union"].update(union) trackers["gIoU"].update(accuracy_iou, n=gt_masks.shape[0]) for meter in trackers.values(): meter.all_reduce() iou_per_class = trackers["intersection"].sum / (trackers["union"].sum + 1e-10) class_iou = iou_per_class[1] global_iou = trackers["gIoU"].avg[1] if args.local_rank == 0: tensorboard_writer.add_scalar("val/giou", global_iou, current_epoch) tensorboard_writer.add_scalar("val/ciou", class_iou, current_epoch) print("giou: {:.4f}, ciou: {:.4f}".format(global_iou, class_iou)) return global_iou, class_iou else: # Initializing performance trackers trackers = {"loss": AverageMeter("Loss", ":.4f"), "ce_loss": AverageMeter("CeLoss", ":.4f"), "mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"), "mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"), "mask_loss": AverageMeter("MaskLoss", ":.4f")} # Prepare model for validation phase # Hack to get the loss training_model.train() for data_batch in tqdm.tqdm(validation_loader): # Prepare data and convert relevant tensors to bfloat16 data_batch = dict_to_cuda(data_batch) for key in ["global_enc_images", "grounding_enc_images"]: if data_batch[key] is not None: data_batch[key] = data_batch[key].bfloat16() torch.cuda.empty_cache() # Model inference without gradient tracking with torch.no_grad(): predictions = training_model(**data_batch) # Update performance metrics) for key, tracker in trackers.items(): tracker.update(predictions[key].item(), data_batch["global_enc_images"].size(0)) # Synchronize metrics across processes for tracker in trackers.values(): tracker.all_reduce() # Calculate average validation loss avg_val_loss = trackers["ce_loss"].avg # Tensorboard logging for primary process if args.local_rank == 0: tensorboard_writer.add_scalar("val/loss", avg_val_loss, current_epoch) return avg_val_loss if __name__ == "__main__": args = parse_args(sys.argv[1:]) main(args)