from .image_base import ImageBaseDataset import random from collections import Counter import os import re import tempfile from ..smp import * def get_multi_choice_prediction(response, all_choices, index2ans): for char in [',', '.', '!', '?', ';', ':', "'"]: response = response.strip(char) response = " " + response + " " # add space to avoid partial match candidates = [] for choice in all_choices: # (A) (B) (C) (D) # Add the choice to candidates each time it appears in the response candidates.extend([choice for _ in range(response.count(f'({choice})'))]) if len(candidates) == 0: for choice in all_choices: # A B C D # Similarly, add the choice for each occurrence candidates.extend([choice for _ in range(response.count(f'{choice}'))]) if len(candidates) == 0 and len(response.split()) >= 1: for index, ans in index2ans.items(): # Add index for each occurrence of ans in response candidates.extend([index for _ in range(response.count(ans))]) # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example if len(candidates) == 0 and len(response.split()) >= 1: for index, ans in index2ans.items(): if ans in response: candidates.append(index) # index_ans = False # it's content ans. if len(candidates) == 0: # still not get answer, randomly choose one. return random.choice(all_choices) # return '' else: # Count the occurrence of each candidate candidate_counts = Counter(candidates) # Select the most frequent candidates max_count = max(candidate_counts.values()) most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count] # Combine the most frequent candidates in ABCD order return ''.join(most_frequent_candidates) def extract_numbers(string): # Pattern for numbers with Chinese commas pattern_commas = r'-?\d{1,3}(?:,\d{3})+' # Pattern for scientific notation pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+' # Pattern for simple numbers without Chinese commas pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?!,\d)' # Extract numbers with Chinese commas numbers_with_commas = re.findall(pattern_commas, string) # Extract numbers in scientific notation numbers_scientific = re.findall(pattern_scientific, string) # Extract simple numbers without Chinese commas numbers_simple = re.findall(pattern_simple, string) # Combine all extracted numbers all_numbers = numbers_with_commas + numbers_scientific + numbers_simple return all_numbers def check_is_number(string): try: float(string.replace(',', '')) return True except ValueError: # check if there's comma inside return False def count_letters(string): return sum(c.isalpha() and 'a' <= c <= 'z' or 'A' <= c <= 'Z' for c in string) def normalize_str(string, answer): # check if characters in the string # if number, numerize it. if string is None: return [string] string = string.strip() is_number = check_is_number(string) if is_number: string = string.replace(',', '') string = float(string) # leave 2 decimal string = round(string, 2) return [string] else: # it's likely to be a string if len(string) > len(answer) + 20 or count_letters(string) > count_letters(answer) + 2: return [] return [string] def get_fill_blank_prediction(response, answer): """get the prediction from the generated response, return a list of predicted strings or numbers""" def get_key_subresponses(response): response = response.strip("。").strip() sub_responses = re.split(r'。|\n', response) indicators_of_keys = ['是', '为', '所以', '等于', '方案', '选择', '正确答案', '因此', '最后', '答案', '结果'] key_responses = [] for index, resp in enumerate(sub_responses): # if last one, accept it's an equation (the entire response can be just one sentence with equation) if index == len(sub_responses) - 1: indicators_of_keys.extend(['=']) shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) for indicator in indicators_of_keys: if indicator in resp: if not shortest_key_response: shortest_key_response = resp.split(indicator)[-1].strip() else: if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): shortest_key_response = resp.split(indicator)[-1].strip() if shortest_key_response: # and it's not trivial if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]: key_responses.append(shortest_key_response) if len(key_responses) == 0: # did not found any return [response] return key_responses key_responses = get_key_subresponses(response) pred_list = key_responses.copy() # keep the original string response for resp in key_responses: pred_list.extend(extract_numbers(resp)) tmp_pred_list = [] for i in range(len(pred_list)): tmp_pred_list.extend(normalize_str(pred_list[i], answer)) pred_list = tmp_pred_list # remove duplicates pred_list = list(set(pred_list)) return pred_list def get_TF_prediction(response): """get the prediction from the generated response, return a list of predicted strings or numbers""" def get_key_subresponses(response): response = response.strip("。").strip() sub_responses = re.split(r'。|\n', response) indicators_of_keys = ['是', '为', '所以', '判断', '陈述', '说法', '表达', '答案', '结果'] key_responses = [] for index, resp in enumerate(sub_responses): shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) for indicator in indicators_of_keys: if indicator in resp: if not shortest_key_response: shortest_key_response = resp.split(indicator)[-1].strip() else: if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): shortest_key_response = resp.split(indicator)[-1].strip() if shortest_key_response: # and it's not trivial if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]: key_responses.append(shortest_key_response) if len(key_responses) == 0: # did not found any return [response] return key_responses key_responses = get_key_subresponses(response) pred_list = key_responses.copy() # keep the original string response # remove duplicates pred_list = list(set(pred_list)) return pred_list class CMMMU(ImageBaseDataset): TYPE = 'VQA' DATASET_URL = { 'CMMMU_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/CMMMU_VAL.tsv' } DATASET_MD5 = { 'CMMMU_VAL': 'b4727e2fce2415bf646379e60c11a726' } def dump_image(self, line): os.makedirs(self.img_root, exist_ok=True) tgt_path_z = [] if isinstance(line['image'], list): for i in range(len(line['image'])): tgt_path = osp.join(self.img_root, f"{line['index']}--{i + 1}.jpg") if not read_ok(tgt_path): decode_base64_to_image_file(line['image'][i], tgt_path) tgt_path_z.append(tgt_path) else: tgt_path = osp.join(self.img_root, f"{line['index']}.jpg") if not read_ok(tgt_path): decode_base64_to_image_file(line['image'], tgt_path) tgt_path_z.append(tgt_path) return tgt_path_z @classmethod def evaluate(self, eval_file, **judge_kwargs): suffix = eval_file.split('.')[-1] result_file = eval_file.replace(f'.{suffix}', '_acc.csv') if not osp.exists(result_file): data = load(eval_file) assert 'answer' in data and 'prediction' in data data['prediction'] = [str(x) for x in data['prediction']] data['answer'] = [str(x) for x in data['answer']] correct_count = 0 correct_category = { '技术与工程': [0, 0], '科学': [0, 0], '健康与医学': [0, 0], '商业': [0, 0], '艺术与设计': [0, 0], '人文社会科学': [0, 0], } for i in tqdm(data.iterrows()): line = i[1] correct_category[line['category']][0] += 1 # Options if line['type'] == '选择': index2ans = { 'A': line['option1'], 'B': line['option2'], 'C': line['option3'], 'D': line['option4'] } fact_option = get_multi_choice_prediction(line['prediction'], ['A', 'B', 'C', 'D'], index2ans) if fact_option == line['answer']: correct_count += 1 correct_category[line['category']][1] += 1 # Binary elif line['type'] == '判断': positive_keywords = ['正确', '对', '准确', '肯定', '对的'] negative_keywords = ['不对', '错误', '不正确', '不准确', '不合适', '否定', '错的', '错'] ambiguous_keywords = ['对错', '是否正确', '否正确', '或者', '是否', '正确性', '对不'] def judge_similarity(pred_list, positive_keywords, negative_keywords): positive_count = 0 negative_count = 0 for pred in pred_list: if any(pos_word in pred for pos_word in positive_keywords): positive_count += 1 elif any(neg_word in pred for neg_word in negative_keywords): negative_count += 1 if positive_count > negative_count: return "对" elif negative_count > positive_count: return "错" else: return random.choice(['对', '错']) answer = get_TF_prediction(line['prediction']) answer = [word for word in answer if not any(ambiguous in word for ambiguous in ambiguous_keywords)] fact_answer = judge_similarity(answer, positive_keywords, negative_keywords) if fact_answer == line['answer']: correct_count += 1 correct_category[line['category']][1] += 1 # Fill the Blank else: norm_answers = normalize_str(line['answer'], line['answer']) predicted_answer = get_fill_blank_prediction(line['prediction'], line['answer']) for pred in predicted_answer: # already normalized if isinstance(pred, str): # if it's a string, then find if ans in the pred_i for norm_ans in norm_answers: # only see if the string answer in the string pred # print(norm_ans, pred) if isinstance(norm_ans, str) and norm_ans in pred: correct_count += 1 correct_category[line['category']][1] += 1 else: # it's a number if pred in norm_answers: correct_count += 1 correct_category[line['category']][1] += 1 accuracyz = {} accuracyz['总准确率'] = correct_count / len(data) for i in correct_category.keys(): accuracyz[i] = correct_category[i][1] / correct_category[i][0] accuracyz = d2df(accuracyz) accuracyz.round(10) dump(accuracyz, result_file) result = pd.read_csv(result_file) return result def build_prompt(self, line): if line['type'] == '选择': tgt_path = self.dump_image(line) question = line['question'] options_prompt = 'Options:\n' for i in [['A', '1'], ['B', '2'], ['C', '3'], ['D', '4']]: options_prompt += i[0] + '. ' + line['option' + i[1]] + '\n' prompt = (f'问题: {question}\n' + options_prompt + '请回答上述多项选择题,并选出正确选项。这些题目可能包括单选和多选题型。如果所提供的信息不足以确定一个明确的答案,那么请根据可用的数据和你的判断来选择最可能正确的选项。') msgs = [] if isinstance(tgt_path, list): msgs.extend([dict(type='image', value=p) for p in tgt_path]) else: msgs = [dict(type='image', value=tgt_path)] msgs.append(dict(type='text', value=prompt)) return msgs elif line['type'] == '判断': msgs = super().build_prompt(line) assert msgs[-1]['type'] == 'text' msgs[-1]['value'] += '\n请回答上述判断题,并根据题目描述和所给的信息来判断问题中陈述的对错。如果信息不完整或不足以作出绝对判断,请运用你的逻辑推理和现有信息来做出最可能的判断。' return msgs else: msgs = super().build_prompt(line) assert msgs[-1]['type'] == 'text' msgs[-1]['value'] += '\n请回答上述填空题,并根据题目的要求和所提供的信息来给出最恰当的答案。如果信息不足以确切回答,那么请依据现有的数据和你的推理能力来填写最合理的答案。' return msgs