Model save
Browse files- README.md +154 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
base_model: vinai/phobert-base
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: training_sentiment_analysis
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# training_sentiment_analysis
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5287
|
21 |
+
- Accuracy: 0.7977
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- num_epochs: 20
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 0.9299 | 0.21 | 200 | 0.8274 | 0.6387 |
|
54 |
+
| 0.7793 | 0.43 | 400 | 0.6643 | 0.7188 |
|
55 |
+
| 0.6574 | 0.64 | 600 | 0.5868 | 0.7659 |
|
56 |
+
| 0.6132 | 0.86 | 800 | 0.5582 | 0.7723 |
|
57 |
+
| 0.5791 | 1.07 | 1000 | 0.5516 | 0.7831 |
|
58 |
+
| 0.554 | 1.28 | 1200 | 0.5187 | 0.7964 |
|
59 |
+
| 0.5258 | 1.5 | 1400 | 0.5126 | 0.8034 |
|
60 |
+
| 0.5373 | 1.71 | 1600 | 0.5168 | 0.8003 |
|
61 |
+
| 0.5266 | 1.93 | 1800 | 0.5284 | 0.8028 |
|
62 |
+
| 0.5076 | 2.14 | 2000 | 0.5178 | 0.7977 |
|
63 |
+
| 0.5094 | 2.36 | 2200 | 0.5135 | 0.8028 |
|
64 |
+
| 0.5032 | 2.57 | 2400 | 0.5023 | 0.8104 |
|
65 |
+
| 0.5034 | 2.78 | 2600 | 0.5088 | 0.8047 |
|
66 |
+
| 0.4923 | 3.0 | 2800 | 0.5219 | 0.7996 |
|
67 |
+
| 0.4934 | 3.21 | 3000 | 0.4905 | 0.8130 |
|
68 |
+
| 0.4798 | 3.43 | 3200 | 0.4908 | 0.8098 |
|
69 |
+
| 0.4831 | 3.64 | 3400 | 0.4875 | 0.8073 |
|
70 |
+
| 0.4707 | 3.85 | 3600 | 0.4986 | 0.8073 |
|
71 |
+
| 0.4674 | 4.07 | 3800 | 0.5196 | 0.8104 |
|
72 |
+
| 0.4535 | 4.28 | 4000 | 0.4896 | 0.8098 |
|
73 |
+
| 0.464 | 4.5 | 4200 | 0.5175 | 0.8079 |
|
74 |
+
| 0.4715 | 4.71 | 4400 | 0.5002 | 0.8028 |
|
75 |
+
| 0.468 | 4.93 | 4600 | 0.4883 | 0.8111 |
|
76 |
+
| 0.4645 | 5.14 | 4800 | 0.5187 | 0.8041 |
|
77 |
+
| 0.445 | 5.35 | 5000 | 0.4928 | 0.8066 |
|
78 |
+
| 0.4558 | 5.57 | 5200 | 0.4870 | 0.8079 |
|
79 |
+
| 0.4405 | 5.78 | 5400 | 0.4985 | 0.8104 |
|
80 |
+
| 0.4648 | 6.0 | 5600 | 0.4842 | 0.8060 |
|
81 |
+
| 0.435 | 6.21 | 5800 | 0.4911 | 0.8117 |
|
82 |
+
| 0.437 | 6.42 | 6000 | 0.4854 | 0.8085 |
|
83 |
+
| 0.4588 | 6.64 | 6200 | 0.4879 | 0.8085 |
|
84 |
+
| 0.4342 | 6.85 | 6400 | 0.4922 | 0.8104 |
|
85 |
+
| 0.4347 | 7.07 | 6600 | 0.4911 | 0.8142 |
|
86 |
+
| 0.4326 | 7.28 | 6800 | 0.4914 | 0.8079 |
|
87 |
+
| 0.4267 | 7.49 | 7000 | 0.4917 | 0.8104 |
|
88 |
+
| 0.4241 | 7.71 | 7200 | 0.4887 | 0.8136 |
|
89 |
+
| 0.4376 | 7.92 | 7400 | 0.5122 | 0.8079 |
|
90 |
+
| 0.4323 | 8.14 | 7600 | 0.4909 | 0.8098 |
|
91 |
+
| 0.4264 | 8.35 | 7800 | 0.4882 | 0.8142 |
|
92 |
+
| 0.4175 | 8.57 | 8000 | 0.5091 | 0.8053 |
|
93 |
+
| 0.4228 | 8.78 | 8200 | 0.5060 | 0.8098 |
|
94 |
+
| 0.4189 | 8.99 | 8400 | 0.4941 | 0.8092 |
|
95 |
+
| 0.4161 | 9.21 | 8600 | 0.5010 | 0.8174 |
|
96 |
+
| 0.4078 | 9.42 | 8800 | 0.4949 | 0.8079 |
|
97 |
+
| 0.4201 | 9.64 | 9000 | 0.5017 | 0.8073 |
|
98 |
+
| 0.4141 | 9.85 | 9200 | 0.4985 | 0.8092 |
|
99 |
+
| 0.4132 | 10.06 | 9400 | 0.5032 | 0.8053 |
|
100 |
+
| 0.4043 | 10.28 | 9600 | 0.5038 | 0.8130 |
|
101 |
+
| 0.4187 | 10.49 | 9800 | 0.4981 | 0.8104 |
|
102 |
+
| 0.3827 | 10.71 | 10000 | 0.5126 | 0.8073 |
|
103 |
+
| 0.4074 | 10.92 | 10200 | 0.5088 | 0.8073 |
|
104 |
+
| 0.4013 | 11.13 | 10400 | 0.5061 | 0.8073 |
|
105 |
+
| 0.3888 | 11.35 | 10600 | 0.5013 | 0.8085 |
|
106 |
+
| 0.3855 | 11.56 | 10800 | 0.4993 | 0.8060 |
|
107 |
+
| 0.3924 | 11.78 | 11000 | 0.5075 | 0.8085 |
|
108 |
+
| 0.4046 | 11.99 | 11200 | 0.4999 | 0.8028 |
|
109 |
+
| 0.3957 | 12.21 | 11400 | 0.5089 | 0.8034 |
|
110 |
+
| 0.381 | 12.42 | 11600 | 0.5208 | 0.8073 |
|
111 |
+
| 0.3906 | 12.63 | 11800 | 0.5137 | 0.8066 |
|
112 |
+
| 0.3734 | 12.85 | 12000 | 0.5183 | 0.8041 |
|
113 |
+
| 0.3928 | 13.06 | 12200 | 0.5069 | 0.8066 |
|
114 |
+
| 0.3774 | 13.28 | 12400 | 0.5086 | 0.8009 |
|
115 |
+
| 0.3892 | 13.49 | 12600 | 0.4967 | 0.8060 |
|
116 |
+
| 0.372 | 13.7 | 12800 | 0.5043 | 0.8041 |
|
117 |
+
| 0.388 | 13.92 | 13000 | 0.5095 | 0.8073 |
|
118 |
+
| 0.3754 | 14.13 | 13200 | 0.5104 | 0.8022 |
|
119 |
+
| 0.3639 | 14.35 | 13400 | 0.5263 | 0.7983 |
|
120 |
+
| 0.3795 | 14.56 | 13600 | 0.5146 | 0.8015 |
|
121 |
+
| 0.3792 | 14.78 | 13800 | 0.5066 | 0.8041 |
|
122 |
+
| 0.3589 | 14.99 | 14000 | 0.5136 | 0.8079 |
|
123 |
+
| 0.3624 | 15.2 | 14200 | 0.5237 | 0.8022 |
|
124 |
+
| 0.3659 | 15.42 | 14400 | 0.5166 | 0.8060 |
|
125 |
+
| 0.3657 | 15.63 | 14600 | 0.5178 | 0.8003 |
|
126 |
+
| 0.359 | 15.85 | 14800 | 0.5152 | 0.7983 |
|
127 |
+
| 0.3677 | 16.06 | 15000 | 0.5212 | 0.8034 |
|
128 |
+
| 0.3521 | 16.27 | 15200 | 0.5324 | 0.8003 |
|
129 |
+
| 0.3589 | 16.49 | 15400 | 0.5238 | 0.8041 |
|
130 |
+
| 0.3695 | 16.7 | 15600 | 0.5113 | 0.7977 |
|
131 |
+
| 0.3606 | 16.92 | 15800 | 0.5137 | 0.7983 |
|
132 |
+
| 0.3581 | 17.13 | 16000 | 0.5131 | 0.7996 |
|
133 |
+
| 0.3488 | 17.34 | 16200 | 0.5270 | 0.7990 |
|
134 |
+
| 0.3499 | 17.56 | 16400 | 0.5236 | 0.7964 |
|
135 |
+
| 0.3603 | 17.77 | 16600 | 0.5187 | 0.8003 |
|
136 |
+
| 0.3578 | 17.99 | 16800 | 0.5224 | 0.8022 |
|
137 |
+
| 0.3449 | 18.2 | 17000 | 0.5228 | 0.7990 |
|
138 |
+
| 0.3418 | 18.42 | 17200 | 0.5287 | 0.8009 |
|
139 |
+
| 0.3334 | 18.63 | 17400 | 0.5322 | 0.7996 |
|
140 |
+
| 0.3567 | 18.84 | 17600 | 0.5294 | 0.7983 |
|
141 |
+
| 0.3541 | 19.06 | 17800 | 0.5250 | 0.8003 |
|
142 |
+
| 0.365 | 19.27 | 18000 | 0.5246 | 0.7983 |
|
143 |
+
| 0.337 | 19.49 | 18200 | 0.5278 | 0.7977 |
|
144 |
+
| 0.3301 | 19.7 | 18400 | 0.5283 | 0.7990 |
|
145 |
+
| 0.3421 | 19.91 | 18600 | 0.5287 | 0.7977 |
|
146 |
+
|
147 |
+
|
148 |
+
### Framework versions
|
149 |
+
|
150 |
+
- PEFT 0.10.0
|
151 |
+
- Transformers 4.39.3
|
152 |
+
- Pytorch 2.1.2
|
153 |
+
- Datasets 2.18.0
|
154 |
+
- Tokenizers 0.15.2
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9460276
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d8aeff2f89ee64f8e5cc133d2b5f8ae9f33dd2dc6905e1f90d819f0d37b808f
|
3 |
size 9460276
|