{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "7c1f714e", "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow import keras\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n", "\n", "x_train,x_test = x_train/255.0,x_test/255.0\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "model = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=(28,28)),\n", " keras.layers.Dense(128,activation='relu'),\n", " keras.layers.Dense(10,activation='softmax')\n", " \n", " \n", "])\n", "\n", "model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n", "model.fit(x_train,y_train,epochs=5)\n", "\n", "model.save(\"mnist_model.keras\")\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "af40fe46", "metadata": {}, "outputs": [], "source": [ "from huggingface_hub import HfApi\n", "repo_id=\"turab31/mnist-model\"\n", "api = HfApi()\n", "api.create_repo(repo_id=repo_id,exist_ok=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "2bec5662", "metadata": {}, "outputs": [], "source": [ "from huggingface_hub import upload_folder\n", "upload_folder(folder_path=\"\",repo_id=repo_id,repo_type=\"model\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }