--- license: llama3.2 language: - en - zh base_model: - meta-llama/Llama-3.2-3B library_name: transformers tags: - Taiwan - R.O.C - zhtw - SLM - Llama-32 datasets: - lianghsun/tw-reasoning-instruct - minyichen/tw-instruct-R1-200k - minyichen/tw_mm_R1 model-index: - name: Llama-3.2-3B-F1-Instruct results: - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: tmmlu+ config: all split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 44.11 - task: type: question-answering name: Single Choice Question dataset: type: cais/mmlu name: mmlu config: all split: test revision: c30699e metrics: - name: single choice type: accuracy value: 50.64 - task: type: question-answering name: Single Choice Question dataset: type: lianghsun/tw-legal-benchmark-v1 name: tw-legal-benchmark-v1 config: all split: test revision: 66c3a5f metrics: - name: single choice type: accuracy value: 35.24 metrics: - accuracy --- # Model Card for Llama-3.2-3B-F1-Instruct (a.k.a __Formosa-1__ or __F1__)
 > *Note: The checkpoint for this model will be released soon. Please stay tuned. 🙏* **Llama-3.2-3B-F1-Instruct**(a.k.a **Formosa-1** or **F1**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)** 與 **[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。 ## Model Details ### Model Description - **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.) - **Funded by:** [APMIC](https://www.apmic.ai/) - **Model type:** LlamaForCausalLM - **Language(s) (NLP):** Tranditional Chinese & English - **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt) ### Model Sources - **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct) - **Paper:** (TBA) ## Evaluation ### Results 下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架 | 模型 | 評測模式 | TMMLU+(%) | 台灣法律(%) | MMLU(%) | 測試次數 | 選項排序 | |------------------------------------|---------|----------------|----------------|----------------|---------|---------| | [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3 | 隨機 | | [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | box | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3 | 隨機 | | [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3 | 隨機 | | [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3 | 隨機 | | [twinkle-ai/Llama-3.2-3B-F1-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct) (ours) | box | 44.11 (±0.0179) | 35.24 (±0.0119) | 50.64 (±0.0189) | 3 | 隨機 | --- ## 🔧 Tool Calling 本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。 Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it! ### 1️⃣ 啟動 vLLM 後端 ```bash vllm serve twinkle-ai/Llama-3.2-3B-F1-Instruct \ --port 8001 \ --enable-auto-tool-choice \ --tool-call-parser hermes ``` ### 2️⃣ 定義工具(Functions) ```python def get_weather(location: str, unit: str): return f"{location}的氣溫是{unit}26度,晴朗無風" def search(query: str): return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。" tools = [ { "type": "function", "function": { "name": "get_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"}, "unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]} }, "required": ["location", "unit"] } } }, { "type": "function", "function": { "name": "search", "description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。", "parameters": { "type": "object", "properties": { "query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"} }, "required": ["query"] } } } ] ``` ### 3️⃣ 執行工具調用(Tool Calls) > **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。** ```python response = client.chat.completions.create( model=client.models.list().data[0].id, messages=[ {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"}, {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"}, ], max_tokens=1500, temperature=0.6, top_p=0.95, tools=tools, tool_choice="auto" ) print(response.choices[0].message.tool_calls) ``` #### ⚙️ Tool Calls List: ```json [ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')] ``` ### 4️⃣ 產生最終回答 ```python response = client.chat.completions.create( model=client.models.list().data[0].id, messages=[ {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"}, {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"}, { "role": "assistant", "content": "", "tool_calls": [ { "id": response.choices[0].message.tool_calls[0].id, "type": "function", "function": { "name": response.choices[0].message.tool_calls[0].function.name, "arguments": response.choices[0].message.tool_calls[0].function.arguments } }, { "id": response.choices[0].message.tool_calls[1].id, "type": "function", "function": { "name": response.choices[0].message.tool_calls[1].function.name, "arguments": response.choices[0].message.tool_calls[1].function.arguments } } ] }, { "role": "tool", "content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)), "tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call }, { "role": "tool", "content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)), "tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call } ], max_tokens=1500, temperature=0.6, top_p=0.95, tools=tools, tool_choice="auto" ) print(response.choices[0].message.content) ``` #### 📋 最終輸出內容: ```text 以下是您請求的資訊: **臺北市氣溫** - 目前的氣溫為 **26°C**(攝氏) - 天候狀況:晴朗無風 **川普最新關稅政策概述** 1. **對等關稅政策** - 對 18 個經濟體課徵 50% 的對等關稅 - 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅 2. **報復型對等關稅** - 日本 24%、歐盟 20% 3. **對中國的高額關稅** - 增加至 54%(原有關稅 + 新增 34%) 4. **特殊案例** - 加拿大與墨西哥不適用,但其他商品課徵 25% - 汽車與部分商品的免稅即將到期 5. **對台灣的影響** - 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅 6. **全球視角** - 歐盟與日本關稅比例相對較高 ``` ## Citation ```yaml @misc{twinkleai2025llama3.2f1, title = {Llama-3.2-3B-F1-Instruct: A Traditional Chinese Instruction-Tuned Language Model for Taiwan}, author = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave}, year = {2025}, howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}}, note = {Twinkle AI and APMIC. All authors contributed equally.} } ``` ## Acknowledge - 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。 - 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。 ## Model Card Authors [Twinkle AI](https://huggingface.co/twinkle-ai) ## Model Card Contact [Twinkle AI](https://huggingface.co/twinkle-ai)