--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train600_eval300_v1_docidx metrics: - accuracy model-index: - name: lmind_nq_train600_eval300_v1_docidx_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train600_eval300_v1_docidx type: tyzhu/lmind_nq_train600_eval300_v1_docidx metrics: - name: Accuracy type: accuracy value: 0.8462492584802891 --- # lmind_nq_train600_eval300_v1_docidx_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train600_eval300_v1_docidx dataset. It achieves the following results on the evaluation set: - Loss: 0.3697 - Accuracy: 0.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4931 | 0.5 | 28 | 2.3904 | 0.5749 | | 2.4699 | 1.0 | 56 | 2.1014 | 0.6050 | | 1.9006 | 1.5 | 84 | 1.8079 | 0.6393 | | 1.9317 | 2.0 | 112 | 1.5510 | 0.6722 | | 1.3984 | 2.5 | 140 | 1.2850 | 0.7075 | | 1.3662 | 3.0 | 168 | 1.0900 | 0.7374 | | 0.9041 | 3.5 | 196 | 0.8909 | 0.7670 | | 0.9056 | 4.0 | 224 | 0.7502 | 0.7903 | | 0.6131 | 4.5 | 252 | 0.6304 | 0.8067 | | 0.6101 | 5.0 | 280 | 0.5429 | 0.8215 | | 0.3772 | 5.5 | 308 | 0.4872 | 0.8287 | | 0.4265 | 6.0 | 336 | 0.4437 | 0.8357 | | 0.2552 | 6.5 | 364 | 0.4226 | 0.8389 | | 0.2875 | 7.0 | 392 | 0.4019 | 0.8418 | | 0.1874 | 7.5 | 420 | 0.3965 | 0.8430 | | 0.1958 | 8.0 | 448 | 0.3812 | 0.8441 | | 0.1443 | 8.5 | 476 | 0.3852 | 0.8450 | | 0.1535 | 9.0 | 504 | 0.3791 | 0.8456 | | 0.1236 | 9.5 | 532 | 0.3849 | 0.8456 | | 0.1221 | 10.0 | 560 | 0.3697 | 0.8462 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1