Update READEME
Browse files
README.md
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: Chinese
|
| 3 |
+
datasets: CLUECorpusSmall
|
| 4 |
+
widget:
|
| 5 |
+
- text: "这是很久之前的事情了"
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Chinese GPT2 Model
|
| 12 |
+
|
| 13 |
+
## Model description
|
| 14 |
+
|
| 15 |
+
The model is used to generate Chinese texts. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall).
|
| 16 |
+
|
| 17 |
+
## How to use
|
| 18 |
+
|
| 19 |
+
You can use the model directly with a pipeline for text generation:
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
| 23 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
|
| 24 |
+
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
|
| 25 |
+
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
| 26 |
+
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
|
| 27 |
+
[{'generated_text': '这是很久之前的事情了 ! 这 件 事 情 之 后 我 每 天 都 问 自 己 , 对 未 来 的 影 响 是 什 么 ? 在 这 个 过 程 中 我 一 直 提 高 自 己 的 理 论 和 实 践 能 力 , 比 如 说 , 我 们 现 在 有 很 多 很 多 的 投 资 行 为 可 以 赚 钱 , 在 美 国 有 很 多 交 易 行 为 , 是 一 个 比 较 灵 活 的 模'}]
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## Training data
|
| 33 |
+
|
| 34 |
+
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
|
| 35 |
+
|
| 36 |
+
## Training procedure
|
| 37 |
+
|
| 38 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.
|
| 39 |
+
|
| 40 |
+
Stage1:
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
| 44 |
+
--vocab_path models/google_zh_vocab.txt \
|
| 45 |
+
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
|
| 46 |
+
--seq_length 128 --processes_num 32 --target lm
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
|
| 51 |
+
--vocab_path models/google_zh_vocab.txt \
|
| 52 |
+
--output_model_path models/cluecorpussmall_gpt2_seq128_model.bin \
|
| 53 |
+
--config_path models/gpt2/config.json \
|
| 54 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
| 55 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
| 56 |
+
--learning_rate 1e-4 --batch_size 64 \
|
| 57 |
+
--embedding word_pos --remove_embedding_layernorm \
|
| 58 |
+
--encoder transformer --mask causal --layernorm_positioning pre \
|
| 59 |
+
--target lm --tie_weight
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
Stage2:
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
| 66 |
+
--vocab_path models/google_zh_vocab.txt \
|
| 67 |
+
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
|
| 68 |
+
--seq_length 1024 --processes_num 32 --target lm
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
```
|
| 72 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
|
| 73 |
+
--pretrained_model_path models/cluecorpussmall_gpt2_seq128_model.bin-1000000 \
|
| 74 |
+
--vocab_path models/google_zh_vocab.txt \
|
| 75 |
+
--output_model_path models/cluecorpussmall_gpt2_seq1024_model.bin \
|
| 76 |
+
--config_path models/gpt2/config.json \
|
| 77 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
| 78 |
+
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
|
| 79 |
+
--learning_rate 5e-5 --batch_size 16 \
|
| 80 |
+
--embedding word_pos --remove_embedding_layernorm \
|
| 81 |
+
--encoder transformer --mask causal --layernorm_positioning pre \
|
| 82 |
+
--target lm --tie_weight
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_seq1024_model.bin-250000 \
|
| 89 |
+
--output_model_path pytorch_model.bin \
|
| 90 |
+
--layers_num 12
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
### BibTeX entry and citation info
|
| 94 |
+
|
| 95 |
+
```
|
| 96 |
+
@article{zhao2019uer,
|
| 97 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
| 98 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
| 99 |
+
journal={EMNLP-IJCNLP 2019},
|
| 100 |
+
pages={241},
|
| 101 |
+
year={2019}
|
| 102 |
+
}
|
| 103 |
+
```
|