Commit
·
29db415
1
Parent(s):
9ceaf70
Upload transforms.py with huggingface_hub
Browse files- transforms.py +193 -0
transforms.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
| 13 |
+
unnormalized_widths,
|
| 14 |
+
unnormalized_heights,
|
| 15 |
+
unnormalized_derivatives,
|
| 16 |
+
inverse=False,
|
| 17 |
+
tails=None,
|
| 18 |
+
tail_bound=1.,
|
| 19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 22 |
+
|
| 23 |
+
if tails is None:
|
| 24 |
+
spline_fn = rational_quadratic_spline
|
| 25 |
+
spline_kwargs = {}
|
| 26 |
+
else:
|
| 27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 28 |
+
spline_kwargs = {
|
| 29 |
+
'tails': tails,
|
| 30 |
+
'tail_bound': tail_bound
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
outputs, logabsdet = spline_fn(
|
| 34 |
+
inputs=inputs,
|
| 35 |
+
unnormalized_widths=unnormalized_widths,
|
| 36 |
+
unnormalized_heights=unnormalized_heights,
|
| 37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 38 |
+
inverse=inverse,
|
| 39 |
+
min_bin_width=min_bin_width,
|
| 40 |
+
min_bin_height=min_bin_height,
|
| 41 |
+
min_derivative=min_derivative,
|
| 42 |
+
**spline_kwargs
|
| 43 |
+
)
|
| 44 |
+
return outputs, logabsdet
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 48 |
+
bin_locations[..., -1] += eps
|
| 49 |
+
return torch.sum(
|
| 50 |
+
inputs[..., None] >= bin_locations,
|
| 51 |
+
dim=-1
|
| 52 |
+
) - 1
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
| 56 |
+
unnormalized_widths,
|
| 57 |
+
unnormalized_heights,
|
| 58 |
+
unnormalized_derivatives,
|
| 59 |
+
inverse=False,
|
| 60 |
+
tails='linear',
|
| 61 |
+
tail_bound=1.,
|
| 62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 66 |
+
outside_interval_mask = ~inside_interval_mask
|
| 67 |
+
|
| 68 |
+
outputs = torch.zeros_like(inputs)
|
| 69 |
+
logabsdet = torch.zeros_like(inputs)
|
| 70 |
+
|
| 71 |
+
if tails == 'linear':
|
| 72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 74 |
+
unnormalized_derivatives[..., 0] = constant
|
| 75 |
+
unnormalized_derivatives[..., -1] = constant
|
| 76 |
+
|
| 77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 78 |
+
logabsdet[outside_interval_mask] = 0
|
| 79 |
+
else:
|
| 80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
| 81 |
+
|
| 82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
| 83 |
+
inputs=inputs[inside_interval_mask],
|
| 84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 87 |
+
inverse=inverse,
|
| 88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
| 89 |
+
min_bin_width=min_bin_width,
|
| 90 |
+
min_bin_height=min_bin_height,
|
| 91 |
+
min_derivative=min_derivative
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
return outputs, logabsdet
|
| 95 |
+
|
| 96 |
+
def rational_quadratic_spline(inputs,
|
| 97 |
+
unnormalized_widths,
|
| 98 |
+
unnormalized_heights,
|
| 99 |
+
unnormalized_derivatives,
|
| 100 |
+
inverse=False,
|
| 101 |
+
left=0., right=1., bottom=0., top=1.,
|
| 102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
| 105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 106 |
+
raise ValueError('Input to a transform is not within its domain')
|
| 107 |
+
|
| 108 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 109 |
+
|
| 110 |
+
if min_bin_width * num_bins > 1.0:
|
| 111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
| 112 |
+
if min_bin_height * num_bins > 1.0:
|
| 113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
| 114 |
+
|
| 115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
| 119 |
+
cumwidths = (right - left) * cumwidths + left
|
| 120 |
+
cumwidths[..., 0] = left
|
| 121 |
+
cumwidths[..., -1] = right
|
| 122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 123 |
+
|
| 124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 125 |
+
|
| 126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
| 130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 131 |
+
cumheights[..., 0] = bottom
|
| 132 |
+
cumheights[..., -1] = top
|
| 133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 134 |
+
|
| 135 |
+
if inverse:
|
| 136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 137 |
+
else:
|
| 138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 139 |
+
|
| 140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 142 |
+
|
| 143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 144 |
+
delta = heights / widths
|
| 145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 146 |
+
|
| 147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 149 |
+
|
| 150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
|
| 152 |
+
if inverse:
|
| 153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
| 154 |
+
+ input_derivatives_plus_one
|
| 155 |
+
- 2 * input_delta)
|
| 156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
| 157 |
+
b = (input_heights * input_derivatives
|
| 158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
| 159 |
+
+ input_derivatives_plus_one
|
| 160 |
+
- 2 * input_delta))
|
| 161 |
+
c = - input_delta * (inputs - input_cumheights)
|
| 162 |
+
|
| 163 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 164 |
+
assert (discriminant >= 0).all()
|
| 165 |
+
|
| 166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 168 |
+
|
| 169 |
+
theta_one_minus_theta = root * (1 - root)
|
| 170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 171 |
+
* theta_one_minus_theta)
|
| 172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
| 173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 174 |
+
+ input_derivatives * (1 - root).pow(2))
|
| 175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 176 |
+
|
| 177 |
+
return outputs, -logabsdet
|
| 178 |
+
else:
|
| 179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 181 |
+
|
| 182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
| 183 |
+
+ input_derivatives * theta_one_minus_theta)
|
| 184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 185 |
+
* theta_one_minus_theta)
|
| 186 |
+
outputs = input_cumheights + numerator / denominator
|
| 187 |
+
|
| 188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
| 189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
| 191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 192 |
+
|
| 193 |
+
return outputs, logabsdet
|