Commit
·
8529d77
1
Parent(s):
da6d1dc
Upload losses.py with huggingface_hub
Browse files
losses.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import commons
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def feature_loss(fmap_r, fmap_g):
|
| 8 |
+
loss = 0
|
| 9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
| 10 |
+
for rl, gl in zip(dr, dg):
|
| 11 |
+
rl = rl.float().detach()
|
| 12 |
+
gl = gl.float()
|
| 13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
| 14 |
+
|
| 15 |
+
return loss * 2
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
| 19 |
+
loss = 0
|
| 20 |
+
r_losses = []
|
| 21 |
+
g_losses = []
|
| 22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 23 |
+
dr = dr.float()
|
| 24 |
+
dg = dg.float()
|
| 25 |
+
r_loss = torch.mean((1-dr)**2)
|
| 26 |
+
g_loss = torch.mean(dg**2)
|
| 27 |
+
loss += (r_loss + g_loss)
|
| 28 |
+
r_losses.append(r_loss.item())
|
| 29 |
+
g_losses.append(g_loss.item())
|
| 30 |
+
|
| 31 |
+
return loss, r_losses, g_losses
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def generator_loss(disc_outputs):
|
| 35 |
+
loss = 0
|
| 36 |
+
gen_losses = []
|
| 37 |
+
for dg in disc_outputs:
|
| 38 |
+
dg = dg.float()
|
| 39 |
+
l = torch.mean((1-dg)**2)
|
| 40 |
+
gen_losses.append(l)
|
| 41 |
+
loss += l
|
| 42 |
+
|
| 43 |
+
return loss, gen_losses
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
| 47 |
+
"""
|
| 48 |
+
z_p, logs_q: [b, h, t_t]
|
| 49 |
+
m_p, logs_p: [b, h, t_t]
|
| 50 |
+
"""
|
| 51 |
+
z_p = z_p.float()
|
| 52 |
+
logs_q = logs_q.float()
|
| 53 |
+
m_p = m_p.float()
|
| 54 |
+
logs_p = logs_p.float()
|
| 55 |
+
z_mask = z_mask.float()
|
| 56 |
+
|
| 57 |
+
kl = logs_p - logs_q - 0.5
|
| 58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
| 59 |
+
kl = torch.sum(kl * z_mask)
|
| 60 |
+
l = kl / torch.sum(z_mask)
|
| 61 |
+
return l
|