Commit
·
9e94804
1
Parent(s):
9f80bc3
Upload mel_processing.py with huggingface_hub
Browse files- mel_processing.py +112 -0
mel_processing.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torch.utils.data
|
| 8 |
+
import numpy as np
|
| 9 |
+
import librosa
|
| 10 |
+
import librosa.util as librosa_util
|
| 11 |
+
from librosa.util import normalize, pad_center, tiny
|
| 12 |
+
from scipy.signal import get_window
|
| 13 |
+
from scipy.io.wavfile import read
|
| 14 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 15 |
+
|
| 16 |
+
MAX_WAV_VALUE = 32768.0
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 20 |
+
"""
|
| 21 |
+
PARAMS
|
| 22 |
+
------
|
| 23 |
+
C: compression factor
|
| 24 |
+
"""
|
| 25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
| 29 |
+
"""
|
| 30 |
+
PARAMS
|
| 31 |
+
------
|
| 32 |
+
C: compression factor used to compress
|
| 33 |
+
"""
|
| 34 |
+
return torch.exp(x) / C
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def spectral_normalize_torch(magnitudes):
|
| 38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
| 39 |
+
return output
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def spectral_de_normalize_torch(magnitudes):
|
| 43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
| 44 |
+
return output
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
mel_basis = {}
|
| 48 |
+
hann_window = {}
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
| 52 |
+
if torch.min(y) < -1.:
|
| 53 |
+
print('min value is ', torch.min(y))
|
| 54 |
+
if torch.max(y) > 1.:
|
| 55 |
+
print('max value is ', torch.max(y))
|
| 56 |
+
|
| 57 |
+
global hann_window
|
| 58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
| 59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
| 60 |
+
if wnsize_dtype_device not in hann_window:
|
| 61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
| 62 |
+
|
| 63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 64 |
+
y = y.squeeze(1)
|
| 65 |
+
|
| 66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
| 68 |
+
|
| 69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 70 |
+
return spec
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
| 74 |
+
global mel_basis
|
| 75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
| 76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
| 77 |
+
if fmax_dtype_device not in mel_basis:
|
| 78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
| 79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
| 80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 81 |
+
spec = spectral_normalize_torch(spec)
|
| 82 |
+
return spec
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
| 86 |
+
if torch.min(y) < -1.:
|
| 87 |
+
print('min value is ', torch.min(y))
|
| 88 |
+
if torch.max(y) > 1.:
|
| 89 |
+
print('max value is ', torch.max(y))
|
| 90 |
+
|
| 91 |
+
global mel_basis, hann_window
|
| 92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
| 93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
| 94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
| 95 |
+
if fmax_dtype_device not in mel_basis:
|
| 96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
| 97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
| 98 |
+
if wnsize_dtype_device not in hann_window:
|
| 99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
| 100 |
+
|
| 101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 102 |
+
y = y.squeeze(1)
|
| 103 |
+
|
| 104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
| 106 |
+
|
| 107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 108 |
+
|
| 109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 110 |
+
spec = spectral_normalize_torch(spec)
|
| 111 |
+
|
| 112 |
+
return spec
|