W0216 21:42:32.224000 72477 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.224000 72477 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.224000 72477 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.224000 72477 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.367000 3204481 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.367000 3204481 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.367000 3204481 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.367000 3204481 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.367000 661651 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.367000 661651 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.367000 661651 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.367000 661651 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.395000 651409 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.395000 651409 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.395000 651409 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.395000 651409 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.395000 1040604 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.395000 1040604 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.395000 1040604 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.395000 1040604 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.467000 3650976 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.467000 3650976 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.467000 3650976 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.467000 3650976 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.614000 3720888 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.614000 3720888 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.614000 3720888 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.614000 3720888 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.619000 4181118 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:42:32.619000 4181118 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:42:32.619000 4181118 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:42:32.619000 4181118 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** slurmstepd: error: Prolog hung on node h100-st-p548xlarge-303 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-304 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-308 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-309 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-305 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-310 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-307 slurmstepd: error: Prolog hung on node h100-st-p548xlarge-306 W0216 21:43:09.087000 2042403 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:09.087000 2042403 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:09.087000 2042403 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:09.087000 2042403 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.056000 2384267 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:10.056000 2384267 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.056000 2384267 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:10.056000 2384267 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.210000 1676195 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:10.210000 1676195 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.210000 1676195 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:10.210000 1676195 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.393000 1431684 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:10.393000 1431684 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:10.393000 1431684 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:10.393000 1431684 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:13.588000 2165941 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:13.588000 2165941 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:13.588000 2165941 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:13.588000 2165941 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:16.662000 3028060 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:16.662000 3028060 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:16.662000 3028060 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:16.662000 3028060 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:17.173000 1442337 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:17.173000 1442337 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:17.173000 1442337 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:17.173000 1442337 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:18.084000 2029073 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 21:43:18.084000 2029073 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 21:43:18.084000 2029073 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 21:43:18.084000 2029073 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. Loading checkpoint shards: 0%| | 0/5 [00:00', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank11]: Traceback (most recent call last): [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank11]: train(attn_implementation="flash_attention_2") [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank11]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank11]: gen_vision_tower = build_gen_vision_tower(model_args) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank11]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank11]: self.load_model() [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank11]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank11]: self.model = _build_vision_tower(**self.config) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank11]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank11]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank11]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank11]: with _open_file_like(f, "rb") as opened_file: [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank11]: return _open_file(name_or_buffer, mode) [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank11]: super().__init__(open(name, mode)) [rank11]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank118]: Traceback (most recent call last): [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank118]: train(attn_implementation="flash_attention_2") [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank118]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank118]: gen_vision_tower = build_gen_vision_tower(model_args) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank118]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank118]: self.load_model() [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank118]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank118]: self.model = _build_vision_tower(**self.config) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank118]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank118]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank118]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank118]: with _open_file_like(f, "rb") as opened_file: [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank118]: return _open_file(name_or_buffer, mode) [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank118]: super().__init__(open(name, mode)) [rank118]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank61]: Traceback (most recent call last): [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank61]: train(attn_implementation="flash_attention_2") [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank61]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank61]: gen_vision_tower = build_gen_vision_tower(model_args) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank61]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank61]: self.load_model() [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank61]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank61]: self.model = _build_vision_tower(**self.config) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank61]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank61]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank61]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank61]: with _open_file_like(f, "rb") as opened_file: [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank61]: return _open_file(name_or_buffer, mode) [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank61]: super().__init__(open(name, mode)) [rank61]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank73]: Traceback (most recent call last): [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank73]: train(attn_implementation="flash_attention_2") [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank73]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank73]: gen_vision_tower = build_gen_vision_tower(model_args) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank73]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank73]: self.load_model() [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank73]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank73]: self.model = _build_vision_tower(**self.config) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank73]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank73]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank73]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank73]: with _open_file_like(f, "rb") as opened_file: [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank73]: return _open_file(name_or_buffer, mode) [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank73]: super().__init__(open(name, mode)) [rank73]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank21]: Traceback (most recent call last): [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank21]: train(attn_implementation="flash_attention_2") [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank21]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank21]: gen_vision_tower = build_gen_vision_tower(model_args) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank21]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank21]: self.load_model() [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank21]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank21]: self.model = _build_vision_tower(**self.config) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank21]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank21]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank21]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank21]: with _open_file_like(f, "rb") as opened_file: [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank21]: return _open_file(name_or_buffer, mode) [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank21]: super().__init__(open(name, mode)) [rank21]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank22]: Traceback (most recent call last): [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank22]: train(attn_implementation="flash_attention_2") [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank22]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank22]: gen_vision_tower = build_gen_vision_tower(model_args) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank22]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank22]: self.load_model() [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank22]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank22]: self.model = _build_vision_tower(**self.config) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank22]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank22]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank22]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank22]: with _open_file_like(f, "rb") as opened_file: [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank22]: return _open_file(name_or_buffer, mode) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank22]: super().__init__(open(name, mode)) [rank22]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank9]: Traceback (most recent call last): [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank9]: train(attn_implementation="flash_attention_2") [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank9]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank9]: gen_vision_tower = build_gen_vision_tower(model_args) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank9]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank9]: self.load_model() [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank9]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank9]: self.model = _build_vision_tower(**self.config) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank9]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank9]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank9]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank9]: with _open_file_like(f, "rb") as opened_file: [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank9]: return _open_file(name_or_buffer, mode) [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank9]: super().__init__(open(name, mode)) [rank9]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank29]: Traceback (most recent call last): [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank29]: train(attn_implementation="flash_attention_2") [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank29]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank29]: gen_vision_tower = build_gen_vision_tower(model_args) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank29]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank29]: self.load_model() [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank29]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank29]: self.model = _build_vision_tower(**self.config) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank29]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank29]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank29]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank29]: with _open_file_like(f, "rb") as opened_file: [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank29]: return _open_file(name_or_buffer, mode) [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank29]: super().__init__(open(name, mode)) [rank29]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank76]: Traceback (most recent call last): [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank76]: train(attn_implementation="flash_attention_2") [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank76]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank76]: gen_vision_tower = build_gen_vision_tower(model_args) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank76]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank76]: self.load_model() [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank76]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank76]: self.model = _build_vision_tower(**self.config) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank76]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank76]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank76]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank76]: with _open_file_like(f, "rb") as opened_file: [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank76]: return _open_file(name_or_buffer, mode) [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank76]: super().__init__(open(name, mode)) [rank76]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank31]: Traceback (most recent call last): [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank31]: train(attn_implementation="flash_attention_2") [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank31]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank31]: gen_vision_tower = build_gen_vision_tower(model_args) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank31]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank31]: self.load_model() [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank31]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank31]: self.model = _build_vision_tower(**self.config) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank31]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank31]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank31]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank31]: with _open_file_like(f, "rb") as opened_file: [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank31]: return _open_file(name_or_buffer, mode) [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank31]: super().__init__(open(name, mode)) [rank31]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank74]: Traceback (most recent call last): [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank74]: train(attn_implementation="flash_attention_2") [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank74]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank74]: gen_vision_tower = build_gen_vision_tower(model_args) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank74]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank74]: self.load_model() [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank74]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank74]: self.model = _build_vision_tower(**self.config) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank74]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank74]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank74]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank74]: with _open_file_like(f, "rb") as opened_file: [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank74]: return _open_file(name_or_buffer, mode) [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank74]: super().__init__(open(name, mode)) [rank74]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank79]: Traceback (most recent call last): [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank79]: train(attn_implementation="flash_attention_2") [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank79]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank79]: gen_vision_tower = build_gen_vision_tower(model_args) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank79]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank79]: self.load_model() [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank79]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank79]: self.model = _build_vision_tower(**self.config) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank79]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank79]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank79]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank79]: with _open_file_like(f, "rb") as opened_file: [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank79]: return _open_file(name_or_buffer, mode) [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank79]: super().__init__(open(name, mode)) [rank79]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank83]: Traceback (most recent call last): [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank83]: train(attn_implementation="flash_attention_2") [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank83]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank83]: gen_vision_tower = build_gen_vision_tower(model_args) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank83]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank83]: self.load_model() [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank83]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank83]: self.model = _build_vision_tower(**self.config) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank83]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank83]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank83]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank83]: with _open_file_like(f, "rb") as opened_file: [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank83]: return _open_file(name_or_buffer, mode) [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank83]: super().__init__(open(name, mode)) [rank83]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank86]: Traceback (most recent call last): [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank86]: train(attn_implementation="flash_attention_2") [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank86]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank86]: gen_vision_tower = build_gen_vision_tower(model_args) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank86]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank86]: self.load_model() [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank86]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank86]: self.model = _build_vision_tower(**self.config) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank86]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank86]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank86]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank86]: with _open_file_like(f, "rb") as opened_file: [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank86]: return _open_file(name_or_buffer, mode) [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank86]: super().__init__(open(name, mode)) [rank86]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank77]: Traceback (most recent call last): [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank77]: train(attn_implementation="flash_attention_2") [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank77]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank77]: gen_vision_tower = build_gen_vision_tower(model_args) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank77]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank77]: self.load_model() [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank77]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank77]: self.model = _build_vision_tower(**self.config) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank77]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank77]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank77]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank77]: with _open_file_like(f, "rb") as opened_file: [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank77]: return _open_file(name_or_buffer, mode) [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank77]: super().__init__(open(name, mode)) [rank77]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank58]: Traceback (most recent call last): [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank58]: train(attn_implementation="flash_attention_2") [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank58]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank58]: gen_vision_tower = build_gen_vision_tower(model_args) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank58]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank58]: self.load_model() [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank58]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank58]: self.model = _build_vision_tower(**self.config) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank58]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank58]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank58]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank58]: with _open_file_like(f, "rb") as opened_file: [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank58]: return _open_file(name_or_buffer, mode) [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank58]: super().__init__(open(name, mode)) [rank58]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank19]: Traceback (most recent call last): [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank19]: train(attn_implementation="flash_attention_2") [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank19]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank19]: gen_vision_tower = build_gen_vision_tower(model_args) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank19]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank19]: self.load_model() [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank19]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank19]: self.model = _build_vision_tower(**self.config) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank19]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank19]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank19]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank19]: with _open_file_like(f, "rb") as opened_file: [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank19]: return _open_file(name_or_buffer, mode) [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank19]: super().__init__(open(name, mode)) [rank19]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank37]: Traceback (most recent call last): [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank37]: train(attn_implementation="flash_attention_2") [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank37]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank37]: gen_vision_tower = build_gen_vision_tower(model_args) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank37]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank37]: self.load_model() [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank37]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank37]: self.model = _build_vision_tower(**self.config) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank37]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank37]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank37]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank37]: with _open_file_like(f, "rb") as opened_file: [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank37]: return _open_file(name_or_buffer, mode) [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank37]: super().__init__(open(name, mode)) [rank37]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank84]: Traceback (most recent call last): [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank84]: train(attn_implementation="flash_attention_2") [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank84]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank84]: gen_vision_tower = build_gen_vision_tower(model_args) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank84]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank84]: self.load_model() [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank84]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank84]: self.model = _build_vision_tower(**self.config) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank84]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank84]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank84]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank84]: with _open_file_like(f, "rb") as opened_file: [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank84]: return _open_file(name_or_buffer, mode) [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank84]: super().__init__(open(name, mode)) [rank84]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank23]: Traceback (most recent call last): [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank23]: train(attn_implementation="flash_attention_2") [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank23]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank23]: gen_vision_tower = build_gen_vision_tower(model_args) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank23]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank23]: self.load_model() [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank23]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank23]: self.model = _build_vision_tower(**self.config) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank23]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank23]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank23]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank23]: with _open_file_like(f, "rb") as opened_file: [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank23]: return _open_file(name_or_buffer, mode) [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank23]: super().__init__(open(name, mode)) [rank23]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank24]: Traceback (most recent call last): [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank24]: train(attn_implementation="flash_attention_2") [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank24]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank24]: gen_vision_tower = build_gen_vision_tower(model_args) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank24]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank24]: self.load_model() [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank24]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank24]: self.model = _build_vision_tower(**self.config) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank24]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank24]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank24]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank24]: with _open_file_like(f, "rb") as opened_file: [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank24]: return _open_file(name_or_buffer, mode) [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank24]: super().__init__(open(name, mode)) [rank24]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank60]: Traceback (most recent call last): [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank60]: train(attn_implementation="flash_attention_2") [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank60]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank60]: gen_vision_tower = build_gen_vision_tower(model_args) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank60]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank60]: self.load_model() [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank60]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank60]: self.model = _build_vision_tower(**self.config) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank60]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank60]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank60]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank60]: with _open_file_like(f, "rb") as opened_file: [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank60]: return _open_file(name_or_buffer, mode) [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank60]: super().__init__(open(name, mode)) [rank60]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank41]: Traceback (most recent call last): [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank41]: train(attn_implementation="flash_attention_2") [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank41]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank41]: gen_vision_tower = build_gen_vision_tower(model_args) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank41]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank41]: self.load_model() [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank41]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank41]: self.model = _build_vision_tower(**self.config) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank41]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank41]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank41]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank41]: with _open_file_like(f, "rb") as opened_file: [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank41]: return _open_file(name_or_buffer, mode) [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank41]: super().__init__(open(name, mode)) [rank41]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank78]: Traceback (most recent call last): [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank78]: train(attn_implementation="flash_attention_2") [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank78]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank78]: gen_vision_tower = build_gen_vision_tower(model_args) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank78]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank78]: self.load_model() [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank78]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank78]: self.model = _build_vision_tower(**self.config) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank78]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank78]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank78]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank78]: with _open_file_like(f, "rb") as opened_file: [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank78]: return _open_file(name_or_buffer, mode) [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank78]: super().__init__(open(name, mode)) [rank78]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank80]: Traceback (most recent call last): [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank80]: train(attn_implementation="flash_attention_2") [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank80]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank80]: gen_vision_tower = build_gen_vision_tower(model_args) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank80]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank80]: self.load_model() [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank80]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank80]: self.model = _build_vision_tower(**self.config) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank80]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank80]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank80]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank80]: with _open_file_like(f, "rb") as opened_file: [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank80]: return _open_file(name_or_buffer, mode) [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank80]: super().__init__(open(name, mode)) [rank80]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank30]: Traceback (most recent call last): [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank30]: train(attn_implementation="flash_attention_2") [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank30]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank30]: gen_vision_tower = build_gen_vision_tower(model_args) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank30]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank13]: Traceback (most recent call last): [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank13]: train(attn_implementation="flash_attention_2") [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank13]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank13]: gen_vision_tower = build_gen_vision_tower(model_args) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank13]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank13]: self.load_model() [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank13]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank13]: self.model = _build_vision_tower(**self.config) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank13]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank30]: self.load_model() [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank30]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank30]: self.model = _build_vision_tower(**self.config) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank30]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank13]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank13]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank13]: with _open_file_like(f, "rb") as opened_file: [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank13]: return _open_file(name_or_buffer, mode) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank30]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank30]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank30]: with _open_file_like(f, "rb") as opened_file: [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank30]: return _open_file(name_or_buffer, mode) [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank13]: super().__init__(open(name, mode)) [rank13]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank30]: super().__init__(open(name, mode)) [rank30]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank57]: Traceback (most recent call last): [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank57]: train(attn_implementation="flash_attention_2") [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank57]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank57]: gen_vision_tower = build_gen_vision_tower(model_args) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank57]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank57]: self.load_model() [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank57]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank57]: self.model = _build_vision_tower(**self.config) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank57]: state_dict = load_clip_visual_state_dict(vision_tower_path) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank57]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank57]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank57]: with _open_file_like(f, "rb") as opened_file: [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank57]: return _open_file(name_or_buffer, mode) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank57]: super().__init__(open(name, mode)) [rank57]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank125]: Traceback (most recent call last): [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank125]: train(attn_implementation="flash_attention_2") [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank125]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank125]: gen_vision_tower = build_gen_vision_tower(model_args) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank125]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank125]: self.load_model() [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank125]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank125]: self.model = _build_vision_tower(**self.config) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank125]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank125]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank125]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank125]: with _open_file_like(f, "rb") as opened_file: [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank125]: return _open_file(name_or_buffer, mode) [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank125]: super().__init__(open(name, mode)) [rank125]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank85]: Traceback (most recent call last): [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank85]: train(attn_implementation="flash_attention_2") [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank85]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank85]: gen_vision_tower = build_gen_vision_tower(model_args) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank85]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank85]: self.load_model() [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank85]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank85]: self.model = _build_vision_tower(**self.config) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank85]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank85]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank85]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank85]: with _open_file_like(f, "rb") as opened_file: [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank85]: return _open_file(name_or_buffer, mode) [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank85]: super().__init__(open(name, mode)) [rank85]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank16]: Traceback (most recent call last): [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank16]: train(attn_implementation="flash_attention_2") [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank16]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank16]: gen_vision_tower = build_gen_vision_tower(model_args) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank16]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank16]: self.load_model() [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank16]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank16]: self.model = _build_vision_tower(**self.config) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank16]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank16]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank16]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank16]: with _open_file_like(f, "rb") as opened_file: [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank16]: return _open_file(name_or_buffer, mode) [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank16]: super().__init__(open(name, mode)) [rank16]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank122]: Traceback (most recent call last): [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank122]: train(attn_implementation="flash_attention_2") [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank122]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank122]: gen_vision_tower = build_gen_vision_tower(model_args) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank122]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank122]: self.load_model() [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank122]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank122]: self.model = _build_vision_tower(**self.config) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank122]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank122]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank122]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank122]: with _open_file_like(f, "rb") as opened_file: [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank122]: return _open_file(name_or_buffer, mode) [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank122]: super().__init__(open(name, mode)) [rank122]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank127]: Traceback (most recent call last): [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank127]: train(attn_implementation="flash_attention_2") [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank127]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank127]: gen_vision_tower = build_gen_vision_tower(model_args) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank127]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank127]: self.load_model() [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank127]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank127]: self.model = _build_vision_tower(**self.config) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank127]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank127]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank127]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank127]: with _open_file_like(f, "rb") as opened_file: [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank127]: return _open_file(name_or_buffer, mode) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank127]: super().__init__(open(name, mode)) [rank127]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank32]: Traceback (most recent call last): [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank32]: train(attn_implementation="flash_attention_2") [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank32]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank32]: gen_vision_tower = build_gen_vision_tower(model_args) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank32]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank32]: self.load_model() [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank32]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank32]: self.model = _build_vision_tower(**self.config) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank32]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank32]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank32]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank32]: with _open_file_like(f, "rb") as opened_file: [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank32]: return _open_file(name_or_buffer, mode) [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank32]: super().__init__(open(name, mode)) [rank32]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank65]: Traceback (most recent call last): [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank65]: train(attn_implementation="flash_attention_2") [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank65]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank65]: gen_vision_tower = build_gen_vision_tower(model_args) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank65]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank65]: self.load_model() [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank65]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank65]: self.model = _build_vision_tower(**self.config) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank65]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank65]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank65]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank65]: with _open_file_like(f, "rb") as opened_file: [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank65]: return _open_file(name_or_buffer, mode) [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank65]: super().__init__(open(name, mode)) [rank65]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank66]: Traceback (most recent call last): [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank66]: train(attn_implementation="flash_attention_2") [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank66]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank66]: gen_vision_tower = build_gen_vision_tower(model_args) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank66]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank66]: self.load_model() [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank66]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank66]: self.model = _build_vision_tower(**self.config) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank66]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank66]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank66]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank66]: with _open_file_like(f, "rb") as opened_file: [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank66]: return _open_file(name_or_buffer, mode) [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank66]: super().__init__(open(name, mode)) [rank66]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank6]: Traceback (most recent call last): [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank6]: train(attn_implementation="flash_attention_2") [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank6]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank6]: gen_vision_tower = build_gen_vision_tower(model_args) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank6]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank6]: self.load_model() [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank6]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank6]: self.model = _build_vision_tower(**self.config) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank6]: state_dict = load_clip_visual_state_dict(vision_tower_path) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank6]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank6]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank6]: with _open_file_like(f, "rb") as opened_file: [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank6]: return _open_file(name_or_buffer, mode) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank6]: super().__init__(open(name, mode)) [rank6]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank123]: Traceback (most recent call last): [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank123]: train(attn_implementation="flash_attention_2") [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank123]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank123]: gen_vision_tower = build_gen_vision_tower(model_args) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank123]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank123]: self.load_model() [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank123]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank123]: self.model = _build_vision_tower(**self.config) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank123]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank123]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank123]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank123]: with _open_file_like(f, "rb") as opened_file: [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank123]: return _open_file(name_or_buffer, mode) [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank123]: super().__init__(open(name, mode)) [rank123]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank40]: Traceback (most recent call last): [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank40]: train(attn_implementation="flash_attention_2") [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank40]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank40]: gen_vision_tower = build_gen_vision_tower(model_args) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank40]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank40]: self.load_model() [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank40]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank40]: self.model = _build_vision_tower(**self.config) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank40]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank40]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank40]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank40]: with _open_file_like(f, "rb") as opened_file: [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank40]: return _open_file(name_or_buffer, mode) [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank40]: super().__init__(open(name, mode)) [rank40]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank5]: Traceback (most recent call last): [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank5]: train(attn_implementation="flash_attention_2") [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank5]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank5]: gen_vision_tower = build_gen_vision_tower(model_args) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank5]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank5]: self.load_model() [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank5]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank5]: self.model = _build_vision_tower(**self.config) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank5]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank5]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank5]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank5]: with _open_file_like(f, "rb") as opened_file: [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank5]: return _open_file(name_or_buffer, mode) [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank5]: super().__init__(open(name, mode)) [rank5]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank100]: Traceback (most recent call last): [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank100]: train(attn_implementation="flash_attention_2") [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank100]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank100]: gen_vision_tower = build_gen_vision_tower(model_args) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank100]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank3]: Traceback (most recent call last): [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank3]: train(attn_implementation="flash_attention_2") [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank3]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank3]: gen_vision_tower = build_gen_vision_tower(model_args) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank3]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank100]: self.load_model() [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank100]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank100]: self.model = _build_vision_tower(**self.config) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank100]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank3]: self.load_model() [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank3]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank3]: self.model = _build_vision_tower(**self.config) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank3]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank100]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank100]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank100]: with _open_file_like(f, "rb") as opened_file: [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank100]: return _open_file(name_or_buffer, mode) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank3]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank3]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank3]: with _open_file_like(f, "rb") as opened_file: [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank3]: return _open_file(name_or_buffer, mode) [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank100]: super().__init__(open(name, mode)) [rank100]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank3]: super().__init__(open(name, mode)) [rank3]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank101]: Traceback (most recent call last): [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank101]: train(attn_implementation="flash_attention_2") [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank101]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank101]: gen_vision_tower = build_gen_vision_tower(model_args) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank101]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank101]: self.load_model() [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank101]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank101]: self.model = _build_vision_tower(**self.config) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank101]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank59]: Traceback (most recent call last): [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank59]: train(attn_implementation="flash_attention_2") [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank59]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank59]: gen_vision_tower = build_gen_vision_tower(model_args) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank59]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank101]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank101]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank101]: with _open_file_like(f, "rb") as opened_file: [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank101]: return _open_file(name_or_buffer, mode) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank59]: self.load_model() [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank59]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank59]: self.model = _build_vision_tower(**self.config) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank59]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank101]: super().__init__(open(name, mode)) [rank101]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank59]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank59]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank59]: with _open_file_like(f, "rb") as opened_file: [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank59]: return _open_file(name_or_buffer, mode) [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank59]: super().__init__(open(name, mode)) [rank59]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank67]: Traceback (most recent call last): [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank67]: train(attn_implementation="flash_attention_2") [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank67]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank67]: gen_vision_tower = build_gen_vision_tower(model_args) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank67]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank67]: self.load_model() [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank67]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank67]: self.model = _build_vision_tower(**self.config) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank67]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank67]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank67]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank67]: with _open_file_like(f, "rb") as opened_file: [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank67]: return _open_file(name_or_buffer, mode) [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank67]: super().__init__(open(name, mode)) [rank67]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank96]: Traceback (most recent call last): [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank96]: train(attn_implementation="flash_attention_2") [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank96]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank96]: gen_vision_tower = build_gen_vision_tower(model_args) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank96]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank96]: self.load_model() [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank96]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank96]: self.model = _build_vision_tower(**self.config) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank96]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank96]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank96]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank96]: with _open_file_like(f, "rb") as opened_file: [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank96]: return _open_file(name_or_buffer, mode) [rank10]: Traceback (most recent call last): [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank10]: train(attn_implementation="flash_attention_2") [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank10]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank10]: gen_vision_tower = build_gen_vision_tower(model_args) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank10]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank96]: super().__init__(open(name, mode)) [rank96]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank10]: self.load_model() [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank10]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank10]: self.model = _build_vision_tower(**self.config) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank10]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank10]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank10]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank10]: with _open_file_like(f, "rb") as opened_file: [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank10]: return _open_file(name_or_buffer, mode) [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank10]: super().__init__(open(name, mode)) [rank10]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank18]: Traceback (most recent call last): [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank18]: train(attn_implementation="flash_attention_2") [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank18]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank18]: gen_vision_tower = build_gen_vision_tower(model_args) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank18]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank18]: self.load_model() [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank18]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank18]: self.model = _build_vision_tower(**self.config) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank18]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank18]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank18]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank18]: with _open_file_like(f, "rb") as opened_file: [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank18]: return _open_file(name_or_buffer, mode) [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank18]: super().__init__(open(name, mode)) [rank18]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank26]: Traceback (most recent call last): [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank26]: train(attn_implementation="flash_attention_2") [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank26]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank26]: gen_vision_tower = build_gen_vision_tower(model_args) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank26]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank26]: self.load_model() [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank26]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank26]: self.model = _build_vision_tower(**self.config) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank26]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank26]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank26]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank26]: with _open_file_like(f, "rb") as opened_file: [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank26]: return _open_file(name_or_buffer, mode) [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank26]: super().__init__(open(name, mode)) [rank26]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank8]: Traceback (most recent call last): [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank8]: train(attn_implementation="flash_attention_2") [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank8]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank8]: gen_vision_tower = build_gen_vision_tower(model_args) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank8]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank8]: self.load_model() [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank8]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank8]: self.model = _build_vision_tower(**self.config) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank8]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank8]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank8]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank8]: with _open_file_like(f, "rb") as opened_file: [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank8]: return _open_file(name_or_buffer, mode) [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank8]: super().__init__(open(name, mode)) [rank8]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank69]: Traceback (most recent call last): [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank69]: train(attn_implementation="flash_attention_2") [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank69]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank69]: gen_vision_tower = build_gen_vision_tower(model_args) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank69]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank69]: self.load_model() [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank69]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank69]: self.model = _build_vision_tower(**self.config) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank69]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank69]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank69]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank69]: with _open_file_like(f, "rb") as opened_file: [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank69]: return _open_file(name_or_buffer, mode) [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank69]: super().__init__(open(name, mode)) [rank69]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank82]: Traceback (most recent call last): [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank82]: train(attn_implementation="flash_attention_2") [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank82]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank82]: gen_vision_tower = build_gen_vision_tower(model_args) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank82]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank82]: self.load_model() [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank82]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank82]: self.model = _build_vision_tower(**self.config) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank82]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank82]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank82]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank82]: with _open_file_like(f, "rb") as opened_file: [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank82]: return _open_file(name_or_buffer, mode) [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank82]: super().__init__(open(name, mode)) [rank82]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank99]: Traceback (most recent call last): [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank99]: train(attn_implementation="flash_attention_2") [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank99]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank99]: gen_vision_tower = build_gen_vision_tower(model_args) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank99]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank99]: self.load_model() [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank99]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank99]: self.model = _build_vision_tower(**self.config) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank99]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank99]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank99]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank99]: with _open_file_like(f, "rb") as opened_file: [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank99]: return _open_file(name_or_buffer, mode) [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank99]: super().__init__(open(name, mode)) [rank99]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank63]: Traceback (most recent call last): [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank63]: train(attn_implementation="flash_attention_2") [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank63]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank63]: gen_vision_tower = build_gen_vision_tower(model_args) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank63]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank63]: self.load_model() [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank63]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank63]: self.model = _build_vision_tower(**self.config) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank63]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank63]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank63]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank63]: with _open_file_like(f, "rb") as opened_file: [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank63]: return _open_file(name_or_buffer, mode) [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank63]: super().__init__(open(name, mode)) [rank63]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank56]: Traceback (most recent call last): [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank56]: train(attn_implementation="flash_attention_2") [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank56]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank56]: gen_vision_tower = build_gen_vision_tower(model_args) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank56]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank56]: self.load_model() [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank56]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank56]: self.model = _build_vision_tower(**self.config) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank56]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank56]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank56]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank56]: with _open_file_like(f, "rb") as opened_file: [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank56]: return _open_file(name_or_buffer, mode) [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank56]: super().__init__(open(name, mode)) [rank56]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank110]: Traceback (most recent call last): [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank110]: train(attn_implementation="flash_attention_2") [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank110]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank110]: gen_vision_tower = build_gen_vision_tower(model_args) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank110]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank110]: self.load_model() [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank110]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank110]: self.model = _build_vision_tower(**self.config) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank110]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank110]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank110]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank110]: with _open_file_like(f, "rb") as opened_file: [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank110]: return _open_file(name_or_buffer, mode) [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank110]: super().__init__(open(name, mode)) [rank110]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank46]: Traceback (most recent call last): [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank46]: train(attn_implementation="flash_attention_2") [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank46]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank46]: gen_vision_tower = build_gen_vision_tower(model_args) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank46]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank46]: self.load_model() [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank46]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank46]: self.model = _build_vision_tower(**self.config) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank46]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank46]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank46]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank46]: with _open_file_like(f, "rb") as opened_file: [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank46]: return _open_file(name_or_buffer, mode) [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank46]: super().__init__(open(name, mode)) [rank46]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank109]: Traceback (most recent call last): [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank109]: train(attn_implementation="flash_attention_2") [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank109]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank109]: gen_vision_tower = build_gen_vision_tower(model_args) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank109]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank109]: self.load_model() [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank109]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank109]: self.model = _build_vision_tower(**self.config) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank109]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank109]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank109]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank109]: with _open_file_like(f, "rb") as opened_file: [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank109]: return _open_file(name_or_buffer, mode) [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank109]: super().__init__(open(name, mode)) [rank109]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank35]: Traceback (most recent call last): [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank35]: train(attn_implementation="flash_attention_2") [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank35]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank35]: gen_vision_tower = build_gen_vision_tower(model_args) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank35]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank35]: self.load_model() [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank35]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank35]: self.model = _build_vision_tower(**self.config) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank35]: state_dict = load_clip_visual_state_dict(vision_tower_path) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank35]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank35]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank35]: with _open_file_like(f, "rb") as opened_file: [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank35]: return _open_file(name_or_buffer, mode) [rank68]: Traceback (most recent call last): [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank68]: train(attn_implementation="flash_attention_2") [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank68]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank68]: gen_vision_tower = build_gen_vision_tower(model_args) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank68]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank35]: super().__init__(open(name, mode)) [rank35]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank68]: self.load_model() [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank68]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank68]: self.model = _build_vision_tower(**self.config) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank68]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank68]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank68]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank68]: with _open_file_like(f, "rb") as opened_file: [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank68]: return _open_file(name_or_buffer, mode) [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank68]: super().__init__(open(name, mode)) [rank68]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank91]: Traceback (most recent call last): [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank91]: train(attn_implementation="flash_attention_2") [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank91]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank91]: gen_vision_tower = build_gen_vision_tower(model_args) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank91]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank91]: self.load_model() [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank91]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank91]: self.model = _build_vision_tower(**self.config) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank91]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank91]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank91]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank91]: with _open_file_like(f, "rb") as opened_file: [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank91]: return _open_file(name_or_buffer, mode) [rank104]: Traceback (most recent call last): [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank104]: train(attn_implementation="flash_attention_2") [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank104]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank104]: gen_vision_tower = build_gen_vision_tower(model_args) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank104]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank91]: super().__init__(open(name, mode)) [rank91]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank104]: self.load_model() [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank104]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank104]: self.model = _build_vision_tower(**self.config) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank104]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank104]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank104]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank104]: with _open_file_like(f, "rb") as opened_file: [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank104]: return _open_file(name_or_buffer, mode) [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank104]: super().__init__(open(name, mode)) [rank104]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank71]: Traceback (most recent call last): [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank71]: train(attn_implementation="flash_attention_2") [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank71]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank71]: gen_vision_tower = build_gen_vision_tower(model_args) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank71]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank71]: self.load_model() [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank71]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank71]: self.model = _build_vision_tower(**self.config) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank71]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank71]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank71]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank71]: with _open_file_like(f, "rb") as opened_file: [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank71]: return _open_file(name_or_buffer, mode) [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank71]: super().__init__(open(name, mode)) [rank71]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank120]: Traceback (most recent call last): [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank120]: train(attn_implementation="flash_attention_2") [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank120]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank120]: gen_vision_tower = build_gen_vision_tower(model_args) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank120]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank120]: self.load_model() [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank120]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank120]: self.model = _build_vision_tower(**self.config) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank120]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank120]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank120]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank120]: with _open_file_like(f, "rb") as opened_file: [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank120]: return _open_file(name_or_buffer, mode) [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank120]: super().__init__(open(name, mode)) [rank120]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank72]: Traceback (most recent call last): [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank72]: train(attn_implementation="flash_attention_2") [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank72]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank72]: gen_vision_tower = build_gen_vision_tower(model_args) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank72]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank72]: self.load_model() [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank72]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank72]: self.model = _build_vision_tower(**self.config) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank72]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank72]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank72]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank72]: with _open_file_like(f, "rb") as opened_file: [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank72]: return _open_file(name_or_buffer, mode) [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank72]: super().__init__(open(name, mode)) [rank72]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank103]: Traceback (most recent call last): [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank103]: train(attn_implementation="flash_attention_2") [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank103]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank103]: gen_vision_tower = build_gen_vision_tower(model_args) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank103]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank103]: self.load_model() [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank103]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank103]: self.model = _build_vision_tower(**self.config) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank103]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank103]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank103]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank103]: with _open_file_like(f, "rb") as opened_file: [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank103]: return _open_file(name_or_buffer, mode) [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank103]: super().__init__(open(name, mode)) [rank103]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank15]: Traceback (most recent call last): [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank15]: train(attn_implementation="flash_attention_2") [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank15]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank15]: gen_vision_tower = build_gen_vision_tower(model_args) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank15]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank15]: self.load_model() [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank15]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank15]: self.model = _build_vision_tower(**self.config) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank15]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank15]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank15]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank15]: with _open_file_like(f, "rb") as opened_file: [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank15]: return _open_file(name_or_buffer, mode) [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank15]: super().__init__(open(name, mode)) [rank15]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank38]: Traceback (most recent call last): [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank38]: train(attn_implementation="flash_attention_2") [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank38]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank38]: gen_vision_tower = build_gen_vision_tower(model_args) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank38]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank38]: self.load_model() [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank38]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank38]: self.model = _build_vision_tower(**self.config) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank38]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank38]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank38]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank38]: with _open_file_like(f, "rb") as opened_file: [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank38]: return _open_file(name_or_buffer, mode) [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank38]: super().__init__(open(name, mode)) [rank38]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank0]: Traceback (most recent call last): [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank0]: train(attn_implementation="flash_attention_2") [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank0]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank0]: gen_vision_tower = build_gen_vision_tower(model_args) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank0]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank0]: self.load_model() [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank0]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank0]: self.model = _build_vision_tower(**self.config) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank0]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank0]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank0]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank0]: with _open_file_like(f, "rb") as opened_file: [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank0]: return _open_file(name_or_buffer, mode) [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank0]: super().__init__(open(name, mode)) [rank0]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank14]: Traceback (most recent call last): [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank14]: train(attn_implementation="flash_attention_2") [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank14]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank14]: gen_vision_tower = build_gen_vision_tower(model_args) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank14]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank14]: self.load_model() [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank14]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank14]: self.model = _build_vision_tower(**self.config) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank14]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank14]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank14]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank14]: with _open_file_like(f, "rb") as opened_file: [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank14]: return _open_file(name_or_buffer, mode) [rank115]: Traceback (most recent call last): [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank115]: train(attn_implementation="flash_attention_2") [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank115]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank115]: gen_vision_tower = build_gen_vision_tower(model_args) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank115]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank14]: super().__init__(open(name, mode)) [rank14]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank115]: self.load_model() [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank115]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank115]: self.model = _build_vision_tower(**self.config) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank115]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank115]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank115]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank115]: with _open_file_like(f, "rb") as opened_file: [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank115]: return _open_file(name_or_buffer, mode) [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank115]: super().__init__(open(name, mode)) [rank115]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank106]: Traceback (most recent call last): [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank106]: train(attn_implementation="flash_attention_2") [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank106]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank106]: gen_vision_tower = build_gen_vision_tower(model_args) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank106]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank106]: self.load_model() [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank106]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank106]: self.model = _build_vision_tower(**self.config) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank106]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank106]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank106]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank106]: with _open_file_like(f, "rb") as opened_file: [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank106]: return _open_file(name_or_buffer, mode) [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank106]: super().__init__(open(name, mode)) [rank106]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank116]: Traceback (most recent call last): [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank116]: train(attn_implementation="flash_attention_2") [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank116]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank116]: gen_vision_tower = build_gen_vision_tower(model_args) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank116]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank116]: self.load_model() [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank116]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank116]: self.model = _build_vision_tower(**self.config) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank116]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank116]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank116]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank116]: with _open_file_like(f, "rb") as opened_file: [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank116]: return _open_file(name_or_buffer, mode) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank116]: super().__init__(open(name, mode)) [rank116]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank62]: Traceback (most recent call last): [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank62]: train(attn_implementation="flash_attention_2") [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank62]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank62]: gen_vision_tower = build_gen_vision_tower(model_args) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank62]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank62]: self.load_model() [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank62]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank62]: self.model = _build_vision_tower(**self.config) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank62]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank62]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank62]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank62]: with _open_file_like(f, "rb") as opened_file: [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank62]: return _open_file(name_or_buffer, mode) [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank62]: super().__init__(open(name, mode)) [rank62]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank113]: Traceback (most recent call last): [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank113]: train(attn_implementation="flash_attention_2") [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank113]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank113]: gen_vision_tower = build_gen_vision_tower(model_args) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank113]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank113]: self.load_model() [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank113]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank113]: self.model = _build_vision_tower(**self.config) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank113]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank113]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank113]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank113]: with _open_file_like(f, "rb") as opened_file: [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank113]: return _open_file(name_or_buffer, mode) [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank113]: super().__init__(open(name, mode)) [rank113]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank42]: Traceback (most recent call last): [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank42]: train(attn_implementation="flash_attention_2") [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank42]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank42]: gen_vision_tower = build_gen_vision_tower(model_args) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank42]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank42]: self.load_model() [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank42]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank42]: self.model = _build_vision_tower(**self.config) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank42]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank42]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank42]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank42]: with _open_file_like(f, "rb") as opened_file: [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank42]: return _open_file(name_or_buffer, mode) [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank42]: super().__init__(open(name, mode)) [rank42]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank89]: Traceback (most recent call last): [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank89]: train(attn_implementation="flash_attention_2") [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank89]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank89]: gen_vision_tower = build_gen_vision_tower(model_args) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank89]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank89]: self.load_model() [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank89]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank89]: self.model = _build_vision_tower(**self.config) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank89]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank89]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank89]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank89]: with _open_file_like(f, "rb") as opened_file: [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank89]: return _open_file(name_or_buffer, mode) [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank89]: super().__init__(open(name, mode)) [rank89]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank88]: Traceback (most recent call last): [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank88]: train(attn_implementation="flash_attention_2") [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank88]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank88]: gen_vision_tower = build_gen_vision_tower(model_args) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank88]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank88]: self.load_model() [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank88]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank88]: self.model = _build_vision_tower(**self.config) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank88]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank88]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank88]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank88]: with _open_file_like(f, "rb") as opened_file: [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank88]: return _open_file(name_or_buffer, mode) [rank98]: Traceback (most recent call last): [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank98]: train(attn_implementation="flash_attention_2") [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank98]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank98]: gen_vision_tower = build_gen_vision_tower(model_args) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank98]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank88]: super().__init__(open(name, mode)) [rank88]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank98]: self.load_model() [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank98]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank98]: self.model = _build_vision_tower(**self.config) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank98]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank98]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank98]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank98]: with _open_file_like(f, "rb") as opened_file: [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank98]: return _open_file(name_or_buffer, mode) [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank98]: super().__init__(open(name, mode)) [rank98]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank97]: Traceback (most recent call last): [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank97]: train(attn_implementation="flash_attention_2") [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank97]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank97]: gen_vision_tower = build_gen_vision_tower(model_args) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank97]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank97]: self.load_model() [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank97]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank97]: self.model = _build_vision_tower(**self.config) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank97]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank97]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank97]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank97]: with _open_file_like(f, "rb") as opened_file: [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank97]: return _open_file(name_or_buffer, mode) [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank97]: super().__init__(open(name, mode)) [rank97]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank27]: Traceback (most recent call last): [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank27]: train(attn_implementation="flash_attention_2") [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank27]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank27]: gen_vision_tower = build_gen_vision_tower(model_args) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank27]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank27]: self.load_model() [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank27]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank27]: self.model = _build_vision_tower(**self.config) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank27]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank27]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank27]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank27]: with _open_file_like(f, "rb") as opened_file: [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank27]: return _open_file(name_or_buffer, mode) [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank27]: super().__init__(open(name, mode)) [rank27]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank112]: Traceback (most recent call last): [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank112]: train(attn_implementation="flash_attention_2") [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank112]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank112]: gen_vision_tower = build_gen_vision_tower(model_args) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank112]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank112]: self.load_model() [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank112]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank112]: self.model = _build_vision_tower(**self.config) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank112]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank112]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank112]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank112]: with _open_file_like(f, "rb") as opened_file: [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank112]: return _open_file(name_or_buffer, mode) [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank112]: super().__init__(open(name, mode)) [rank112]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank93]: Traceback (most recent call last): [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank93]: train(attn_implementation="flash_attention_2") [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank93]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank93]: gen_vision_tower = build_gen_vision_tower(model_args) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank93]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank93]: self.load_model() [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank93]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank93]: self.model = _build_vision_tower(**self.config) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank93]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank93]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank93]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank93]: with _open_file_like(f, "rb") as opened_file: [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank93]: return _open_file(name_or_buffer, mode) [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank93]: super().__init__(open(name, mode)) [rank93]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank105]: Traceback (most recent call last): [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank105]: train(attn_implementation="flash_attention_2") [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank105]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank105]: gen_vision_tower = build_gen_vision_tower(model_args) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank105]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank105]: self.load_model() [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank105]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank105]: self.model = _build_vision_tower(**self.config) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank105]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank105]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank105]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank105]: with _open_file_like(f, "rb") as opened_file: [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank105]: return _open_file(name_or_buffer, mode) [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank105]: super().__init__(open(name, mode)) [rank105]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank48]: Traceback (most recent call last): [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank48]: train(attn_implementation="flash_attention_2") [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank48]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank48]: gen_vision_tower = build_gen_vision_tower(model_args) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank48]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank48]: self.load_model() [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank48]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank48]: self.model = _build_vision_tower(**self.config) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank48]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank48]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank48]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank48]: with _open_file_like(f, "rb") as opened_file: [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank48]: return _open_file(name_or_buffer, mode) [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank48]: super().__init__(open(name, mode)) [rank48]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank95]: Traceback (most recent call last): [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank95]: train(attn_implementation="flash_attention_2") [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank95]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank95]: gen_vision_tower = build_gen_vision_tower(model_args) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank95]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank95]: self.load_model() [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank95]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank95]: self.model = _build_vision_tower(**self.config) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank95]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank95]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank95]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank95]: with _open_file_like(f, "rb") as opened_file: [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank95]: return _open_file(name_or_buffer, mode) [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank95]: super().__init__(open(name, mode)) [rank95]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank117]: Traceback (most recent call last): [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank117]: train(attn_implementation="flash_attention_2") [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank117]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank117]: gen_vision_tower = build_gen_vision_tower(model_args) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank117]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank117]: self.load_model() [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank117]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank117]: self.model = _build_vision_tower(**self.config) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank117]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank117]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank117]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank117]: with _open_file_like(f, "rb") as opened_file: [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank117]: return _open_file(name_or_buffer, mode) [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank117]: super().__init__(open(name, mode)) [rank117]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank54]: Traceback (most recent call last): [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank54]: train(attn_implementation="flash_attention_2") [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank54]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank54]: gen_vision_tower = build_gen_vision_tower(model_args) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank54]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank54]: self.load_model() [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank54]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank54]: self.model = _build_vision_tower(**self.config) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank54]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank54]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank54]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank54]: with _open_file_like(f, "rb") as opened_file: [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank54]: return _open_file(name_or_buffer, mode) [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank54]: super().__init__(open(name, mode)) [rank54]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank53]: Traceback (most recent call last): [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank53]: train(attn_implementation="flash_attention_2") [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank53]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank53]: gen_vision_tower = build_gen_vision_tower(model_args) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank53]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank53]: self.load_model() [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank53]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank53]: self.model = _build_vision_tower(**self.config) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank53]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank53]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank53]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank53]: with _open_file_like(f, "rb") as opened_file: [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank53]: return _open_file(name_or_buffer, mode) [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank53]: super().__init__(open(name, mode)) [rank53]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank44]: Traceback (most recent call last): [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank44]: train(attn_implementation="flash_attention_2") [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank44]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank44]: gen_vision_tower = build_gen_vision_tower(model_args) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank44]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank44]: self.load_model() [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank44]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank44]: self.model = _build_vision_tower(**self.config) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank44]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank44]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank44]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank44]: with _open_file_like(f, "rb") as opened_file: [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank44]: return _open_file(name_or_buffer, mode) [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank44]: super().__init__(open(name, mode)) [rank44]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank90]: Traceback (most recent call last): [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank90]: train(attn_implementation="flash_attention_2") [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank90]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank90]: gen_vision_tower = build_gen_vision_tower(model_args) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank90]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank90]: self.load_model() [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank90]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank90]: self.model = _build_vision_tower(**self.config) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank90]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank90]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank90]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank90]: with _open_file_like(f, "rb") as opened_file: [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank90]: return _open_file(name_or_buffer, mode) [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank90]: super().__init__(open(name, mode)) [rank90]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank119]: Traceback (most recent call last): [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank119]: train(attn_implementation="flash_attention_2") [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank119]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank119]: gen_vision_tower = build_gen_vision_tower(model_args) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank119]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank119]: self.load_model() [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank119]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank119]: self.model = _build_vision_tower(**self.config) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank119]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank119]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank119]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank119]: with _open_file_like(f, "rb") as opened_file: [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank119]: return _open_file(name_or_buffer, mode) [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank119]: super().__init__(open(name, mode)) [rank119]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank25]: Traceback (most recent call last): [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank25]: train(attn_implementation="flash_attention_2") [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank25]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank25]: gen_vision_tower = build_gen_vision_tower(model_args) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank25]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank25]: self.load_model() [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank25]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank25]: self.model = _build_vision_tower(**self.config) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank25]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank25]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank25]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank25]: with _open_file_like(f, "rb") as opened_file: [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank25]: return _open_file(name_or_buffer, mode) [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank25]: super().__init__(open(name, mode)) [rank25]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank33]: Traceback (most recent call last): [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank33]: train(attn_implementation="flash_attention_2") [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank33]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank33]: gen_vision_tower = build_gen_vision_tower(model_args) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank33]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank33]: self.load_model() [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank33]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank33]: self.model = _build_vision_tower(**self.config) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank33]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank33]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank33]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank33]: with _open_file_like(f, "rb") as opened_file: [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank33]: return _open_file(name_or_buffer, mode) [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank33]: super().__init__(open(name, mode)) [rank33]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank108]: Traceback (most recent call last): [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank108]: train(attn_implementation="flash_attention_2") [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank108]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank108]: gen_vision_tower = build_gen_vision_tower(model_args) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank108]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank108]: self.load_model() [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank108]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank108]: self.model = _build_vision_tower(**self.config) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank108]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank108]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank108]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank108]: with _open_file_like(f, "rb") as opened_file: [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank108]: return _open_file(name_or_buffer, mode) [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank108]: super().__init__(open(name, mode)) [rank108]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank124]: Traceback (most recent call last): [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank124]: train(attn_implementation="flash_attention_2") [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank124]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank124]: gen_vision_tower = build_gen_vision_tower(model_args) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank124]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank124]: self.load_model() [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank124]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank124]: self.model = _build_vision_tower(**self.config) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank124]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank124]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank124]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank124]: with _open_file_like(f, "rb") as opened_file: [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank124]: return _open_file(name_or_buffer, mode) [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank124]: super().__init__(open(name, mode)) [rank124]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank51]: Traceback (most recent call last): [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank51]: train(attn_implementation="flash_attention_2") [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank51]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank51]: gen_vision_tower = build_gen_vision_tower(model_args) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank51]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank51]: self.load_model() [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank51]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank51]: self.model = _build_vision_tower(**self.config) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank51]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank51]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank51]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank51]: with _open_file_like(f, "rb") as opened_file: [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank51]: return _open_file(name_or_buffer, mode) [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank51]: super().__init__(open(name, mode)) [rank51]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank49]: Traceback (most recent call last): [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank49]: train(attn_implementation="flash_attention_2") [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank49]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank49]: gen_vision_tower = build_gen_vision_tower(model_args) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank49]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank49]: self.load_model() [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank49]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank49]: self.model = _build_vision_tower(**self.config) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank49]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank49]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank49]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank49]: with _open_file_like(f, "rb") as opened_file: [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank49]: return _open_file(name_or_buffer, mode) [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank49]: super().__init__(open(name, mode)) [rank49]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank92]: Traceback (most recent call last): [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank92]: train(attn_implementation="flash_attention_2") [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank92]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank92]: gen_vision_tower = build_gen_vision_tower(model_args) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank92]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank92]: self.load_model() [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank92]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank92]: self.model = _build_vision_tower(**self.config) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank92]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank92]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank92]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank92]: with _open_file_like(f, "rb") as opened_file: [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank92]: return _open_file(name_or_buffer, mode) [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank92]: super().__init__(open(name, mode)) [rank92]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank50]: Traceback (most recent call last): [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank50]: train(attn_implementation="flash_attention_2") [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank50]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank50]: gen_vision_tower = build_gen_vision_tower(model_args) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank50]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank50]: self.load_model() [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank50]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank50]: self.model = _build_vision_tower(**self.config) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank50]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank50]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank50]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank50]: with _open_file_like(f, "rb") as opened_file: [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank50]: return _open_file(name_or_buffer, mode) [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank50]: super().__init__(open(name, mode)) [rank50]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank75]: Traceback (most recent call last): [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank75]: train(attn_implementation="flash_attention_2") [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank75]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank75]: gen_vision_tower = build_gen_vision_tower(model_args) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank75]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank75]: self.load_model() [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank75]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank75]: self.model = _build_vision_tower(**self.config) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank75]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank75]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank75]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank75]: with _open_file_like(f, "rb") as opened_file: [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank75]: return _open_file(name_or_buffer, mode) [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank75]: super().__init__(open(name, mode)) [rank75]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank39]: Traceback (most recent call last): [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank39]: train(attn_implementation="flash_attention_2") [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank39]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank39]: gen_vision_tower = build_gen_vision_tower(model_args) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank39]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank39]: self.load_model() [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank39]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank39]: self.model = _build_vision_tower(**self.config) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank39]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank39]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank39]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank39]: with _open_file_like(f, "rb") as opened_file: [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank39]: return _open_file(name_or_buffer, mode) [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank39]: super().__init__(open(name, mode)) [rank39]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank47]: Traceback (most recent call last): [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank47]: train(attn_implementation="flash_attention_2") [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank47]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank47]: gen_vision_tower = build_gen_vision_tower(model_args) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank47]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank47]: self.load_model() [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank47]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank47]: self.model = _build_vision_tower(**self.config) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank47]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank47]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank47]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank47]: with _open_file_like(f, "rb") as opened_file: [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank47]: return _open_file(name_or_buffer, mode) [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank47]: super().__init__(open(name, mode)) [rank47]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank55]: Traceback (most recent call last): [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank55]: train(attn_implementation="flash_attention_2") [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank55]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank55]: gen_vision_tower = build_gen_vision_tower(model_args) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank55]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank55]: self.load_model() [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank55]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank55]: self.model = _build_vision_tower(**self.config) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank55]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank55]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank55]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank55]: with _open_file_like(f, "rb") as opened_file: [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank55]: return _open_file(name_or_buffer, mode) [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank55]: super().__init__(open(name, mode)) [rank55]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank94]: Traceback (most recent call last): [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank94]: train(attn_implementation="flash_attention_2") [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank94]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank94]: gen_vision_tower = build_gen_vision_tower(model_args) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank94]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank94]: self.load_model() [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank94]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank94]: self.model = _build_vision_tower(**self.config) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank94]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank94]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank94]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank94]: with _open_file_like(f, "rb") as opened_file: [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank94]: return _open_file(name_or_buffer, mode) [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank94]: super().__init__(open(name, mode)) [rank94]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank45]: Traceback (most recent call last): [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank45]: train(attn_implementation="flash_attention_2") [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank45]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank45]: gen_vision_tower = build_gen_vision_tower(model_args) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank45]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank45]: self.load_model() [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank45]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank45]: self.model = _build_vision_tower(**self.config) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank45]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank45]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank45]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank45]: with _open_file_like(f, "rb") as opened_file: [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank45]: return _open_file(name_or_buffer, mode) [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank45]: super().__init__(open(name, mode)) [rank45]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank52]: Traceback (most recent call last): [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank52]: train(attn_implementation="flash_attention_2") [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank52]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank52]: gen_vision_tower = build_gen_vision_tower(model_args) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank52]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank52]: self.load_model() [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank52]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank52]: self.model = _build_vision_tower(**self.config) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank52]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank52]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank52]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank52]: with _open_file_like(f, "rb") as opened_file: [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank52]: return _open_file(name_or_buffer, mode) [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank52]: super().__init__(open(name, mode)) [rank52]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank111]: Traceback (most recent call last): [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank111]: train(attn_implementation="flash_attention_2") [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank111]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank111]: gen_vision_tower = build_gen_vision_tower(model_args) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank111]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank111]: self.load_model() [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank111]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank111]: self.model = _build_vision_tower(**self.config) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank111]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank111]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank111]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank111]: with _open_file_like(f, "rb") as opened_file: [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank111]: return _open_file(name_or_buffer, mode) [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank111]: super().__init__(open(name, mode)) [rank111]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank126]: Traceback (most recent call last): [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank126]: train(attn_implementation="flash_attention_2") [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank126]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank126]: gen_vision_tower = build_gen_vision_tower(model_args) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank126]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank126]: self.load_model() [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank126]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank126]: self.model = _build_vision_tower(**self.config) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank126]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank126]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank126]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank126]: with _open_file_like(f, "rb") as opened_file: [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank126]: return _open_file(name_or_buffer, mode) [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank126]: super().__init__(open(name, mode)) [rank126]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank87]: Traceback (most recent call last): [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank87]: train(attn_implementation="flash_attention_2") [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank87]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank87]: gen_vision_tower = build_gen_vision_tower(model_args) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank87]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank87]: self.load_model() [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank87]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank87]: self.model = _build_vision_tower(**self.config) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank87]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank87]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank87]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank87]: with _open_file_like(f, "rb") as opened_file: [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank87]: return _open_file(name_or_buffer, mode) [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank87]: super().__init__(open(name, mode)) [rank87]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank28]: Traceback (most recent call last): [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank28]: train(attn_implementation="flash_attention_2") [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank28]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank28]: gen_vision_tower = build_gen_vision_tower(model_args) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank28]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank28]: self.load_model() [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank28]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank28]: self.model = _build_vision_tower(**self.config) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank28]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank28]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank28]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank28]: with _open_file_like(f, "rb") as opened_file: [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank28]: return _open_file(name_or_buffer, mode) [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank28]: super().__init__(open(name, mode)) [rank28]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank34]: Traceback (most recent call last): [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank34]: train(attn_implementation="flash_attention_2") [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank34]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank34]: gen_vision_tower = build_gen_vision_tower(model_args) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank34]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank34]: self.load_model() [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank34]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank34]: self.model = _build_vision_tower(**self.config) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank34]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank34]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank34]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank34]: with _open_file_like(f, "rb") as opened_file: [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank34]: return _open_file(name_or_buffer, mode) [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank34]: super().__init__(open(name, mode)) [rank34]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank70]: Traceback (most recent call last): [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank70]: train(attn_implementation="flash_attention_2") [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank70]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank70]: gen_vision_tower = build_gen_vision_tower(model_args) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank70]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank70]: self.load_model() [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank70]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank70]: self.model = _build_vision_tower(**self.config) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank70]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank70]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank70]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank70]: with _open_file_like(f, "rb") as opened_file: [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank70]: return _open_file(name_or_buffer, mode) [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank70]: super().__init__(open(name, mode)) [rank70]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank64]: Traceback (most recent call last): [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank64]: train(attn_implementation="flash_attention_2") [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank64]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank64]: gen_vision_tower = build_gen_vision_tower(model_args) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank64]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank64]: self.load_model() [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank64]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank64]: self.model = _build_vision_tower(**self.config) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank64]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank64]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank64]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank64]: with _open_file_like(f, "rb") as opened_file: [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank64]: return _open_file(name_or_buffer, mode) [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank64]: super().__init__(open(name, mode)) [rank64]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank17]: Traceback (most recent call last): [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank17]: train(attn_implementation="flash_attention_2") [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank17]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank17]: gen_vision_tower = build_gen_vision_tower(model_args) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank17]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank17]: self.load_model() [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank17]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank17]: self.model = _build_vision_tower(**self.config) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank17]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank17]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank17]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank17]: with _open_file_like(f, "rb") as opened_file: [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank17]: return _open_file(name_or_buffer, mode) [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank17]: super().__init__(open(name, mode)) [rank17]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank102]: Traceback (most recent call last): [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank102]: train(attn_implementation="flash_attention_2") [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank102]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank102]: gen_vision_tower = build_gen_vision_tower(model_args) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank102]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank102]: self.load_model() [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank102]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank102]: self.model = _build_vision_tower(**self.config) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank102]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank102]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank102]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank102]: with _open_file_like(f, "rb") as opened_file: [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank102]: return _open_file(name_or_buffer, mode) [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank102]: super().__init__(open(name, mode)) [rank102]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank121]: Traceback (most recent call last): [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank121]: train(attn_implementation="flash_attention_2") [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank121]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank121]: gen_vision_tower = build_gen_vision_tower(model_args) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank121]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank121]: self.load_model() [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank121]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank121]: self.model = _build_vision_tower(**self.config) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank121]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank121]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank121]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank121]: with _open_file_like(f, "rb") as opened_file: [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank121]: return _open_file(name_or_buffer, mode) [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank121]: super().__init__(open(name, mode)) [rank121]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank4]: Traceback (most recent call last): [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank4]: train(attn_implementation="flash_attention_2") [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank4]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank4]: gen_vision_tower = build_gen_vision_tower(model_args) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank4]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank4]: self.load_model() [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank4]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank4]: self.model = _build_vision_tower(**self.config) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank4]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank4]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank4]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank4]: with _open_file_like(f, "rb") as opened_file: [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank4]: return _open_file(name_or_buffer, mode) [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank4]: super().__init__(open(name, mode)) [rank4]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank107]: Traceback (most recent call last): [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank107]: train(attn_implementation="flash_attention_2") [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank107]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank107]: gen_vision_tower = build_gen_vision_tower(model_args) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank107]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank107]: self.load_model() [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank107]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank107]: self.model = _build_vision_tower(**self.config) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank107]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank107]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank107]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank107]: with _open_file_like(f, "rb") as opened_file: [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank107]: return _open_file(name_or_buffer, mode) [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank107]: super().__init__(open(name, mode)) [rank107]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank43]: Traceback (most recent call last): [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank43]: train(attn_implementation="flash_attention_2") [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank43]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank43]: gen_vision_tower = build_gen_vision_tower(model_args) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank43]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank43]: self.load_model() [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank43]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank43]: self.model = _build_vision_tower(**self.config) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank43]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank43]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank43]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank43]: with _open_file_like(f, "rb") as opened_file: [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank43]: return _open_file(name_or_buffer, mode) [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank43]: super().__init__(open(name, mode)) [rank43]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank7]: Traceback (most recent call last): [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank7]: train(attn_implementation="flash_attention_2") [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank7]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank7]: gen_vision_tower = build_gen_vision_tower(model_args) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank7]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank7]: self.load_model() [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank7]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank7]: self.model = _build_vision_tower(**self.config) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank7]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank7]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank7]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank7]: with _open_file_like(f, "rb") as opened_file: [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank7]: return _open_file(name_or_buffer, mode) [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank7]: super().__init__(open(name, mode)) [rank7]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank36]: Traceback (most recent call last): [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank36]: train(attn_implementation="flash_attention_2") [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank36]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank36]: gen_vision_tower = build_gen_vision_tower(model_args) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank36]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank36]: self.load_model() [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank36]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank36]: self.model = _build_vision_tower(**self.config) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank36]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank36]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank36]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank36]: with _open_file_like(f, "rb") as opened_file: [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank36]: return _open_file(name_or_buffer, mode) [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank36]: super().__init__(open(name, mode)) [rank36]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank114]: Traceback (most recent call last): [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank114]: train(attn_implementation="flash_attention_2") [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank114]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank114]: gen_vision_tower = build_gen_vision_tower(model_args) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank114]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank114]: self.load_model() [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank114]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank114]: self.model = _build_vision_tower(**self.config) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank114]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank114]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank114]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank114]: with _open_file_like(f, "rb") as opened_file: [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank114]: return _open_file(name_or_buffer, mode) [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank114]: super().__init__(open(name, mode)) [rank114]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank12]: Traceback (most recent call last): [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank12]: train(attn_implementation="flash_attention_2") [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank12]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank12]: gen_vision_tower = build_gen_vision_tower(model_args) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank12]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank12]: self.load_model() [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank12]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank12]: self.model = _build_vision_tower(**self.config) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank12]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank12]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank12]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank12]: with _open_file_like(f, "rb") as opened_file: [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank12]: return _open_file(name_or_buffer, mode) [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank12]: super().__init__(open(name, mode)) [rank12]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank2]: Traceback (most recent call last): [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank2]: train(attn_implementation="flash_attention_2") [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank2]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank2]: gen_vision_tower = build_gen_vision_tower(model_args) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank2]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank2]: self.load_model() [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank2]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank2]: self.model = _build_vision_tower(**self.config) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank2]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank2]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank2]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank2]: with _open_file_like(f, "rb") as opened_file: [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank2]: return _open_file(name_or_buffer, mode) [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank2]: super().__init__(open(name, mode)) [rank2]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank20]: Traceback (most recent call last): [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank20]: train(attn_implementation="flash_attention_2") [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank20]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank20]: gen_vision_tower = build_gen_vision_tower(model_args) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank20]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank20]: self.load_model() [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank20]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank20]: self.model = _build_vision_tower(**self.config) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank20]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank20]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank20]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank20]: with _open_file_like(f, "rb") as opened_file: [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank20]: return _open_file(name_or_buffer, mode) [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank20]: super().__init__(open(name, mode)) [rank20]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank1]: Traceback (most recent call last): [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank1]: train(attn_implementation="flash_attention_2") [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank1]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank1]: gen_vision_tower = build_gen_vision_tower(model_args) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank1]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank1]: self.load_model() [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank1]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank1]: self.model = _build_vision_tower(**self.config) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank1]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank1]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank1]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank1]: with _open_file_like(f, "rb") as opened_file: [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank1]: return _open_file(name_or_buffer, mode) [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank1]: super().__init__(open(name, mode)) [rank1]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank81]: Traceback (most recent call last): [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank81]: train(attn_implementation="flash_attention_2") [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1540, in train [rank81]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank81]: gen_vision_tower = build_gen_vision_tower(model_args) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank81]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank81]: self.load_model() [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank81]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank81]: self.model = _build_vision_tower(**self.config) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank81]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank81]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank81]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank81]: with _open_file_like(f, "rb") as opened_file: [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank81]: return _open_file(name_or_buffer, mode) [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank81]: super().__init__(open(name, mode)) [rank81]: NotADirectoryError: [Errno 20] Not a directory: '/fsx_0/user/zhaojiang/models/hub/models--jiuhai--eva_clip_vision_tower/blobs/542011f85db66c1c60e84578bd62bf593405d8b10046e177c8093947e5c6366b/pytorch_model.bin' [rank32]:[W216 21:45:16.211575777 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank40]:[W216 21:45:16.042050452 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank24]:[W216 21:45:16.775667330 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank8]:[W216 21:45:17.008241025 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank112]:[W216 21:45:17.501555745 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank96]:[W216 21:45:17.002598945 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank16]:[W216 21:45:17.661833390 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank80]:[W216 21:45:17.884305992 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank72]:[W216 21:45:17.048235196 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank0]:[W216 21:45:17.991652370 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank56]:[W216 21:45:17.620430503 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank64]:[W216 21:45:17.424868997 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank120]:[W216 21:45:17.084229160 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank48]:[W216 21:45:17.281613682 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank104]:[W216 21:45:17.668469001 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank88]:[W216 21:45:17.264137427 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 21:45:18.154000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041577 closing signal SIGTERM W0216 21:45:18.155000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041578 closing signal SIGTERM W0216 21:45:18.155000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041579 closing signal SIGTERM W0216 21:45:18.156000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041580 closing signal SIGTERM W0216 21:45:18.157000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041581 closing signal SIGTERM W0216 21:45:18.157000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041582 closing signal SIGTERM W0216 21:45:18.158000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041583 closing signal SIGTERM W0216 21:45:18.252000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653260 closing signal SIGTERM W0216 21:45:18.252000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653261 closing signal SIGTERM W0216 21:45:18.253000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653262 closing signal SIGTERM W0216 21:45:18.254000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653265 closing signal SIGTERM W0216 21:45:18.254000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653266 closing signal SIGTERM W0216 21:45:18.254000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653267 closing signal SIGTERM W0216 21:45:18.255000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653268 closing signal SIGTERM W0216 21:45:18.260000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166206 closing signal SIGTERM W0216 21:45:18.260000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166207 closing signal SIGTERM W0216 21:45:18.261000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166208 closing signal SIGTERM W0216 21:45:18.261000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166209 closing signal SIGTERM W0216 21:45:18.262000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166210 closing signal SIGTERM W0216 21:45:18.262000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166211 closing signal SIGTERM W0216 21:45:18.263000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2166213 closing signal SIGTERM W0216 21:45:18.563000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653261 closing signal SIGTERM W0216 21:45:18.563000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653262 closing signal SIGTERM W0216 21:45:18.564000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653263 closing signal SIGTERM W0216 21:45:18.564000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653264 closing signal SIGTERM W0216 21:45:18.564000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653265 closing signal SIGTERM W0216 21:45:18.564000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653266 closing signal SIGTERM W0216 21:45:18.565000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3653267 closing signal SIGTERM W0216 21:45:18.571000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721876 closing signal SIGTERM W0216 21:45:18.572000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721877 closing signal SIGTERM W0216 21:45:18.572000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721878 closing signal SIGTERM W0216 21:45:18.573000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721880 closing signal SIGTERM W0216 21:45:18.574000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721881 closing signal SIGTERM W0216 21:45:18.574000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721882 closing signal SIGTERM W0216 21:45:18.661000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431955 closing signal SIGTERM W0216 21:45:18.662000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431956 closing signal SIGTERM W0216 21:45:18.663000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431958 closing signal SIGTERM W0216 21:45:18.663000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431959 closing signal SIGTERM W0216 21:45:18.664000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431960 closing signal SIGTERM W0216 21:45:18.664000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431961 closing signal SIGTERM W0216 21:45:18.664000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1431962 closing signal SIGTERM W0216 21:45:18.672000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043098 closing signal SIGTERM W0216 21:45:18.673000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043101 closing signal SIGTERM W0216 21:45:18.674000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043103 closing signal SIGTERM W0216 21:45:18.674000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043106 closing signal SIGTERM W0216 21:45:18.675000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043107 closing signal SIGTERM W0216 21:45:18.675000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043110 closing signal SIGTERM W0216 21:45:18.676000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2043114 closing signal SIGTERM W0216 21:45:18.768000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74347 closing signal SIGTERM W0216 21:45:18.769000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74348 closing signal SIGTERM W0216 21:45:18.769000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74349 closing signal SIGTERM W0216 21:45:18.770000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74350 closing signal SIGTERM W0216 21:45:18.770000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74351 closing signal SIGTERM W0216 21:45:18.770000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74352 closing signal SIGTERM W0216 21:45:18.770000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 74353 closing signal SIGTERM W0216 21:45:18.774000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664896 closing signal SIGTERM W0216 21:45:18.775000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664897 closing signal SIGTERM W0216 21:45:18.774000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205452 closing signal SIGTERM W0216 21:45:18.775000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664898 closing signal SIGTERM W0216 21:45:18.775000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205453 closing signal SIGTERM W0216 21:45:18.775000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664899 closing signal SIGTERM W0216 21:45:18.775000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205454 closing signal SIGTERM W0216 21:45:18.776000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664900 closing signal SIGTERM W0216 21:45:18.776000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205456 closing signal SIGTERM W0216 21:45:18.776000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664902 closing signal SIGTERM W0216 21:45:18.776000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205457 closing signal SIGTERM W0216 21:45:18.776000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 664903 closing signal SIGTERM W0216 21:45:18.776000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205458 closing signal SIGTERM W0216 21:45:18.776000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3205459 closing signal SIGTERM W0216 21:45:18.858000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182101 closing signal SIGTERM W0216 21:45:18.859000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182103 closing signal SIGTERM W0216 21:45:18.859000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182106 closing signal SIGTERM W0216 21:45:18.859000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182107 closing signal SIGTERM W0216 21:45:18.860000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182108 closing signal SIGTERM W0216 21:45:18.860000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182109 closing signal SIGTERM W0216 21:45:18.860000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 4182110 closing signal SIGTERM W0216 21:45:18.982000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028915 closing signal SIGTERM W0216 21:45:18.983000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028916 closing signal SIGTERM W0216 21:45:18.984000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028917 closing signal SIGTERM W0216 21:45:18.984000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028918 closing signal SIGTERM W0216 21:45:18.984000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028919 closing signal SIGTERM W0216 21:45:18.984000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028920 closing signal SIGTERM W0216 21:45:18.985000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028922 closing signal SIGTERM W0216 21:45:19.059000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384536 closing signal SIGTERM W0216 21:45:19.060000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384537 closing signal SIGTERM W0216 21:45:19.060000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384538 closing signal SIGTERM W0216 21:45:19.061000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384539 closing signal SIGTERM W0216 21:45:19.061000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384540 closing signal SIGTERM W0216 21:45:19.061000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384541 closing signal SIGTERM W0216 21:45:19.062000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384543 closing signal SIGTERM W0216 21:45:19.062000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676468 closing signal SIGTERM W0216 21:45:19.063000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676469 closing signal SIGTERM W0216 21:45:19.063000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676470 closing signal SIGTERM W0216 21:45:19.063000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676472 closing signal SIGTERM W0216 21:45:19.063000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676473 closing signal SIGTERM W0216 21:45:19.064000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676474 closing signal SIGTERM W0216 21:45:19.064000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676475 closing signal SIGTERM W0216 21:45:19.151000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029244 closing signal SIGTERM W0216 21:45:19.152000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029245 closing signal SIGTERM W0216 21:45:19.152000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029246 closing signal SIGTERM W0216 21:45:19.153000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029247 closing signal SIGTERM W0216 21:45:19.153000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029248 closing signal SIGTERM W0216 21:45:19.154000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029249 closing signal SIGTERM W0216 21:45:19.154000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029250 closing signal SIGTERM W0216 21:45:19.565000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442523 closing signal SIGTERM W0216 21:45:19.566000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442525 closing signal SIGTERM W0216 21:45:19.566000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442526 closing signal SIGTERM W0216 21:45:19.566000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442527 closing signal SIGTERM W0216 21:45:19.567000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442528 closing signal SIGTERM W0216 21:45:19.567000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442529 closing signal SIGTERM W0216 21:45:19.567000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442530 closing signal SIGTERM E0216 21:45:20.414000 72477 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 7 (pid: 74354) of binary: /usr/bin/python3.10 E0216 21:45:20.420000 3204481 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 3 (pid: 3205455) of binary: /usr/bin/python3.10 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-51.ar-ai-use2.hpcaas rank : 23 (local_rank: 7) exitcode : 1 (pid: 74354) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-50.ar-ai-use2.hpcaas rank : 11 (local_rank: 3) exitcode : 1 (pid: 3205455) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ E0216 21:45:20.544000 2165941 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 6 (pid: 2166212) of binary: /usr/bin/python3.10 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-309.ar-ai-use2.hpcaas rank : 118 (local_rank: 6) exitcode : 1 (pid: 2166212) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ E0216 21:45:20.577000 4181118 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 1 (pid: 4182102) of binary: /usr/bin/python3.10 E0216 21:45:20.596000 1431684 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 2 (pid: 1431957) of binary: /usr/bin/python3.10 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-202.ar-ai-use2.hpcaas rank : 57 (local_rank: 1) exitcode : 1 (pid: 4182102) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-303.ar-ai-use2.hpcaas rank : 66 (local_rank: 2) exitcode : 1 (pid: 1431957) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ E0216 21:45:20.696000 3650976 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 3653260) of binary: /usr/bin/python3.10 E0216 21:45:20.707000 2042403 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 6 (pid: 2043112) of binary: /usr/bin/python3.10 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-52.ar-ai-use2.hpcaas rank : 24 (local_rank: 0) exitcode : 1 (pid: 3653260) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_21:45:18 host : h100-st-p548xlarge-304.ar-ai-use2.hpcaas rank : 78 (local_rank: 6) exitcode : 1 (pid: 2043112) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ srun: error: h100-st-p548xlarge-51: task 2: Exited with exit code 1 srun: Terminating StepId=335798.0 srun: error: h100-st-p548xlarge-50: task 1: Exited with exit code 1 slurmstepd: error: *** STEP 335798.0 ON h100-st-p548xlarge-49 CANCELLED AT 2025-02-16T21:45:20 *** W0216 21:45:20.765000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 3720888 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3721877 closing signal SIGTERM W0216 21:45:20.765000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.766000 1040604 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1041578 closing signal SIGTERM W0216 21:45:20.766000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442528 closing signal SIGTERM W0216 21:45:20.765000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 661651 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.765000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 21:45:20.766000 1676195 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1676469 closing signal SIGTERM W0216 21:45:20.766000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029245 closing signal SIGTERM W0216 21:45:20.766000 3028060 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3028920 closing signal SIGTERM W0216 21:45:20.766000 651409 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 653266 closing signal SIGTERM W0216 21:45:20.766000 2384267 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2384540 closing signal SIGTERM W0216 21:45:20.766000 1442337 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1442530 closing signal SIGTERM W0216 21:45:20.766000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029247 closing signal SIGTERM W0216 21:45:20.767000 2029073 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2029250 closing signal SIGTERM Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 661651 got signal: 15 srun: error: h100-st-p548xlarge-303: task 8: Terminated srun: error: h100-st-p548xlarge-309: task 14: Terminated Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper srun: error: h100-st-p548xlarge-52: task 3: Terminated return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3720888 got signal: 15 srun: error: h100-st-p548xlarge-304: task 9: Terminated srun: error: h100-st-p548xlarge-202: task 7: Terminated Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 1040604 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2029073 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 1676195 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2384267 got signal: 15 self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3028060 got signal: 15 return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 651409 got signal: 15 srun: error: h100-st-p548xlarge-201: task 6: Exited with exit code 1 srun: error: h100-st-p548xlarge-49: task 0: Exited with exit code 1 srun: error: h100-st-p548xlarge-199: task 4: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 1442337 got signal: 15 srun: error: h100-st-p548xlarge-306: task 11: Exited with exit code 1 srun: error: h100-st-p548xlarge-305: task 10: Exited with exit code 1 srun: error: h100-st-p548xlarge-310: task 15: Exited with exit code 1 srun: error: h100-st-p548xlarge-307: task 12: Exited with exit code 1 srun: error: h100-st-p548xlarge-200: task 5: Exited with exit code 1 srun: error: h100-st-p548xlarge-308: task 13: Exited with exit code 1 srun: Force Terminated StepId=335798.0 pretrain.sh: 82: python: not found