Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
datasets:
|
4 |
+
- umd-zhou-lab/recycled_alpaca_v1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
# Model Card for umd-zhou-lab/recycled-alpaca-7b-v1.0
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
This model is trained by fine-tuning llama-2 with recycled alpaca data V1.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
|
20 |
+
|
21 |
+
- **Developed by:** UMD Tianyi Zhou Lab
|
22 |
+
- **Model type:** An auto-regressive language model based on the transformer architecture
|
23 |
+
- **License:** Llama 2 Community License Agreement
|
24 |
+
- **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)
|
25 |
+
|
26 |
+
### Model Sources
|
27 |
+
|
28 |
+
<!-- Provide the basic links for the model. -->
|
29 |
+
|
30 |
+
- **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning)
|
31 |
+
- **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716)
|
32 |
+
- **Data:** [recycled_alpaca_v1](https://huggingface.co/datasets/umd-zhou-lab/recycled_alpaca_v1)
|
33 |
+
|
34 |
+
## Uses
|
35 |
+
|
36 |
+
The primary use of this model is research on large language models and chatbots.
|
37 |
+
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
38 |
+
|
39 |
+
## Training
|
40 |
+
|
41 |
+
We use the prompt from [FastChat](https://github.com/lm-sys/FastChat):
|
42 |
+
|
43 |
+
```
|
44 |
+
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>......
|
45 |
+
```
|
46 |
+
|
47 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate |
|
48 |
+
| --- | ---: | ---: | ---: | ---: | ---: | ---: |
|
49 |
+
| Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 |
|
50 |
+
|
51 |
+
## Performance
|
52 |
+
|
53 |
+
The following table provides a comparison between our recycled models (V1) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br>
|
54 |
+
|
55 |
+
The Recycled Alpaca Data can be found here: [[hf-Link]](https://huggingface.co/datasets/umd-zhou-lab/recycled_alpaca_v1) <br>
|
56 |
+
The Recycled WizardLM (70k) Data can be found here: [[hf-Link]](https://huggingface.co/datasets/umd-zhou-lab/recycled_wiz70_v1) <br>
|
57 |
+
|
58 |
+
| | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**|
|
59 |
+
|--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:|
|
60 |
+
| **Alpaca 7B** | 26.46 || 50.21 | 42.65 | 76.91 | 41.73 | 39.55 ||/|
|
61 |
+
| **Recycled Alpaca 7B V1.0** | 76.99 || 56.18| 53.92 | 77.68 | 47.55 | 45.55 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v1.0)|
|
62 |
+
| **Recycled Alpaca 13B V1.0** | 83.42 || 58.93| 58.70 | 80.80 | 53.11 | 43.12 ||[Link]|
|
63 |
+
|||||||||||
|
64 |
+
| **WizardLM 7B** | 67.64 || 54.18 | 51.60 | 77.70 | 42.70 | 44.70 ||/|
|
65 |
+
| **Recycled WizardLM 7B V1.0** | 78.88 || 56.21 | 53.92 | 77.05 | 48.35 | 45.52 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v1.0)|
|
66 |
+
|||||||||
|
67 |
+
|
68 |
+
## Citation
|
69 |
+
|
70 |
+
Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
|
71 |
+
```
|
72 |
+
@misc{li2023reflectiontuning,
|
73 |
+
title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning},
|
74 |
+
author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou},
|
75 |
+
year={2023},
|
76 |
+
eprint={2310.11716},
|
77 |
+
archivePrefix={arXiv},
|
78 |
+
primaryClass={cs.CL}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|