danielhanchen commited on
Commit
a600b5d
·
verified ·
1 Parent(s): 1c18aad

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1177 -0
README.md ADDED
@@ -0,0 +1,1177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - LGAI-EXAONE/EXAONE-4.0-32B
4
+ license: other
5
+ license_name: exaone
6
+ license_link: LICENSE
7
+ language:
8
+ - en
9
+ - ko
10
+ - es
11
+ tags:
12
+ - lg-ai
13
+ - unsloth
14
+ - exaone
15
+ - exaone-4.0
16
+ pipeline_tag: text-generation
17
+ library_name: transformers
18
+ ---
19
+
20
+ <p align="center">
21
+ <img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
22
+ 🎉 License Updated! We are pleased to announce our more flexible licensing terms 🤗
23
+ <br>✈️ Try on <a href="https://friendli.ai/suite/~/serverless-endpoints/LGAI-EXAONE/EXAONE-4.0-32B/overview">FriendliAI</a>
24
+ <br>
25
+
26
+ # EXAONE-4.0-32B
27
+
28
+ ## Introduction
29
+
30
+ We introduce **EXAONE 4.0**, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
31
+ to support Spanish in addition to English and Korean.
32
+
33
+ The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.
34
+
35
+ In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:
36
+
37
+ 1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
38
+ 2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.
39
+
40
+ For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).
41
+
42
+
43
+ ### Model Configuration
44
+
45
+ - Number of Parameters (without embeddings): 30.95B
46
+ - Number of Layers: 64
47
+ - Number of Attention Heads: GQA with 40-heads and 8-KV heads
48
+ - Vocab Size: 102,400
49
+ - Context Length: 131,072 tokens
50
+
51
+
52
+ ## Quickstart
53
+
54
+ You should install the transformers library forked from the original, available in our [PR](https://github.com/huggingface/transformers/pull/39129).
55
+ Once this PR is merged and released, we will update this section.
56
+
57
+ You can install the latest version of transformers with support for EXAONE 4.0 by following the command:
58
+
59
+ ```bash
60
+ pip install git+https://github.com/lgai-exaone/transformers@add-exaone4
61
+ ```
62
+
63
+ ### Non-reasoning mode
64
+
65
+ For general use, you can use the EXAONE 4.0 models with the following example:
66
+
67
+ ```python
68
+ from transformers import AutoModelForCausalLM, AutoTokenizer
69
+
70
+ model_name = "LGAI-EXAONE/EXAONE-4.0-32B"
71
+
72
+ model = AutoModelForCausalLM.from_pretrained(
73
+ model_name,
74
+ torch_dtype="bfloat16",
75
+ device_map="auto"
76
+ )
77
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
78
+
79
+ # choose your prompt
80
+ prompt = "Explain how wonderful you are"
81
+ prompt = "Explica lo increíble que eres"
82
+ prompt = "너가 얼마나 대단한지 설명해 봐"
83
+
84
+ messages = [
85
+ {"role": "user", "content": prompt}
86
+ ]
87
+ input_ids = tokenizer.apply_chat_template(
88
+ messages,
89
+ tokenize=True,
90
+ add_generation_prompt=True,
91
+ return_tensors="pt"
92
+ )
93
+
94
+ output = model.generate(
95
+ input_ids.to(model.device),
96
+ max_new_tokens=128,
97
+ do_sample=False,
98
+ )
99
+ print(tokenizer.decode(output[0]))
100
+ ```
101
+
102
+ ### Reasoning mode
103
+
104
+ The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.
105
+
106
+ ```python
107
+ messages = [
108
+ {"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
109
+ ]
110
+ input_ids = tokenizer.apply_chat_template(
111
+ messages,
112
+ tokenize=True,
113
+ add_generation_prompt=True,
114
+ return_tensors="pt",
115
+ enable_thinking=True,
116
+ )
117
+
118
+ output = model.generate(
119
+ input_ids.to(model.device),
120
+ max_new_tokens=128,
121
+ do_sample=True,
122
+ temperature=0.6,
123
+ top_p=0.95
124
+ )
125
+ print(tokenizer.decode(output[0]))
126
+ ```
127
+
128
+ > [!IMPORTANT]
129
+ > The model generation with reasoning mode can be affected sensitively by sampling parameters, so please refer to the [Usage Guideline](#usage-guideline) for better quality.
130
+
131
+ ### Agentic tool use
132
+
133
+ The EXAONE 4.0 models can be used as agents with their tool calling capabilities. You can provide tool schemas to the model for effective tool calling.
134
+
135
+ ```python
136
+ import random
137
+
138
+ def roll_dice(max_num: int):
139
+ return random.randint(1, max_num)
140
+
141
+ tools = [
142
+ {
143
+ "type": "function",
144
+ "function": {
145
+ "name": "roll_dice",
146
+ "description": "Roll a dice with the number 1 to N. User can select the number N.",
147
+ "parameters": {
148
+ "type": "object",
149
+ "required": ["max_num"],
150
+ "properties": {
151
+ "max_num": {
152
+ "type": "int",
153
+ "description": "Max number of the dice"
154
+ }
155
+ }
156
+ }
157
+ }
158
+ }
159
+ ]
160
+
161
+ messages = [
162
+ {"role": "user", "content": "Roll D6 dice twice!"}
163
+ ]
164
+ input_ids = tokenizer.apply_chat_template(
165
+ messages,
166
+ tokenize=True,
167
+ add_generation_prompt=True,
168
+ return_tensors="pt",
169
+ tools=tools,
170
+ )
171
+
172
+ output = model.generate(
173
+ input_ids.to(model.device),
174
+ max_new_tokens=1024,
175
+ do_sample=True,
176
+ temperature=0.6,
177
+ top_p=0.95,
178
+ )
179
+ print(tokenizer.decode(output[0]))
180
+ ```
181
+
182
+
183
+ ## Deployment
184
+
185
+ ### TensorRT-LLM
186
+
187
+ TensorRT-LLM officially supports EXAONE 4.0 models in the latest commits. Before it is released, you need to clone the TensorRT-LLM repository to build from source.
188
+
189
+ ```bash
190
+ git clone https://github.com/NVIDIA/TensorRT-LLM.git
191
+ ```
192
+
193
+ After cloning the repository, you need to build the source for installation. Please refer to [the official documentation](https://nvidia.github.io/TensorRT-LLM/installation/build-from-source-linux.html) for a guide to build the TensorRT-LLM environment.
194
+
195
+ You can run the TensorRT-LLM server by following steps:
196
+
197
+ 1. Write extra configuration YAML file
198
+ ```yaml
199
+ # extra_llm_api_config.yaml
200
+ kv_cache_config:
201
+ enable_block_reuse: false
202
+ ```
203
+
204
+ 2. Run server with the configuration
205
+ ```bash
206
+ trtllm-serve serve [MODEL_PATH] --backend pytorch --extra_llm_api_options extra_llm_api_config.yaml
207
+ ```
208
+
209
+ For more details, please refer to [the documentation](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/exaone) of EXAONE from TensorRT-LLM.
210
+
211
+ > [!NOTE]
212
+ > Other inference engines including `vllm` and `sglang` don't support the EXAONE 4.0 officially now. We will update as soon as these libraries are updated.
213
+
214
+
215
+ ## Performance
216
+
217
+ The following tables show the evaluation results of each model, with reasoning and non-reasoning mode. The evaluation details can be found in the [technical report](https://arxiv.org/abs/2507.11407).
218
+
219
+ - ✅ denotes the model has a hybrid reasoning capability, evaluated by selecting reasoning / non-reasoning on the purpose.
220
+ - To assess Korean **practical** and **professional** knowledge, we adopt both the [KMMLU-Redux](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Redux) and [KMMLU-Pro](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Pro) benchmarks. Both datasets are publicly released!
221
+
222
+
223
+ ### 32B Reasoning Mode
224
+
225
+ <table>
226
+ <tr>
227
+ <th> </th>
228
+ <th>EXAONE 4.0 32B </th>
229
+ <th>Phi 4 reasoning-plus</th>
230
+ <th>Magistral Small-2506</th>
231
+ <th>Qwen 3 32B </th>
232
+ <th>Qwen 3 235B </th>
233
+ <th>DeepSeek R1-0528</th>
234
+ </tr>
235
+ <tr>
236
+ <td align="center">Model Size</td>
237
+ <td align="center">32.0B</td>
238
+ <td align="center">14.7B</td>
239
+ <td align="center">23.6B</td>
240
+ <td align="center">32.8B</td>
241
+ <td align="center">235B</td>
242
+ <td align="center">671B</td>
243
+ </tr>
244
+ <tr>
245
+ <td align="center">Hybrid Reasoning</td>
246
+ <td align="center">✅</td>
247
+ <td align="center"> </td>
248
+ <td align="center"> </td>
249
+ <td align="center">✅</td>
250
+ <td align="center">✅</td>
251
+ <td align="center"> </td>
252
+ </tr>
253
+ <tr>
254
+ <td align="center" colspan='7'><i>World Knowledge</i></td>
255
+ </tr>
256
+ <tr>
257
+ <td >MMLU-Redux</td>
258
+ <td align="center">92.3</td>
259
+ <td align="center">90.8</td>
260
+ <td align="center">86.8</td>
261
+ <td align="center">90.9</td>
262
+ <td align="center">92.7</td>
263
+ <td align="center">93.4</td>
264
+ </tr>
265
+ <tr>
266
+ <td >MMLU-Pro</td>
267
+ <td align="center">81.8</td>
268
+ <td align="center">76.0</td>
269
+ <td align="center">73.4</td>
270
+ <td align="center">80.0</td>
271
+ <td align="center">83.0</td>
272
+ <td align="center">85.0</td>
273
+ </tr>
274
+ <tr>
275
+ <td >GPQA-Diamond</td>
276
+ <td align="center">75.4</td>
277
+ <td align="center">68.9</td>
278
+ <td align="center">68.2</td>
279
+ <td align="center">68.4</td>
280
+ <td align="center">71.1</td>
281
+ <td align="center">81.0</td>
282
+ </tr>
283
+ <tr>
284
+ <td align="center" colspan='7'><i>Math/Coding</i></td>
285
+ </tr>
286
+ <tr>
287
+ <td >AIME 2025</td>
288
+ <td align="center">85.3</td>
289
+ <td align="center">78.0</td>
290
+ <td align="center">62.8</td>
291
+ <td align="center">72.9</td>
292
+ <td align="center">81.5</td>
293
+ <td align="center">87.5</td>
294
+ </tr>
295
+ <tr>
296
+ <td >HMMT Feb 2025</td>
297
+ <td align="center">72.9</td>
298
+ <td align="center">53.6</td>
299
+ <td align="center">43.5</td>
300
+ <td align="center">50.4</td>
301
+ <td align="center">62.5</td>
302
+ <td align="center">79.4</td>
303
+ </tr>
304
+ <tr>
305
+ <td >LiveCodeBench v5</td>
306
+ <td align="center">72.6</td>
307
+ <td align="center">51.7</td>
308
+ <td align="center">55.8</td>
309
+ <td align="center">65.7</td>
310
+ <td align="center">70.7</td>
311
+ <td align="center">75.2</td>
312
+ </tr>
313
+ <tr>
314
+ <td >LiveCodeBench v6</td>
315
+ <td align="center">66.7</td>
316
+ <td align="center">47.1</td>
317
+ <td align="center">47.4</td>
318
+ <td align="center">60.1</td>
319
+ <td align="center">58.9</td>
320
+ <td align="center">70.3</td>
321
+ </tr>
322
+ <tr>
323
+ <td align="center" colspan='7'><i>Instruction Following</i></td>
324
+ </tr>
325
+ <tr>
326
+ <td >IFEval</td>
327
+ <td align="center">83.7</td>
328
+ <td align="center">84.9</td>
329
+ <td align="center">37.9</td>
330
+ <td align="center">85.0</td>
331
+ <td align="center">83.4</td>
332
+ <td align="center">80.8</td>
333
+ </tr>
334
+ <tr>
335
+ <td >Multi-IF (EN)</td>
336
+ <td align="center">73.5</td>
337
+ <td align="center">56.1</td>
338
+ <td align="center">27.4</td>
339
+ <td align="center">73.4</td>
340
+ <td align="center">73.4</td>
341
+ <td align="center">72.0</td>
342
+ </tr>
343
+ <tr>
344
+ <td align="center" colspan='7'><i>Agentic Tool Use</i></td>
345
+ </tr>
346
+ <tr>
347
+ <td >BFCL-v3</td>
348
+ <td align="center">63.9</td>
349
+ <td align="center">N/A</td>
350
+ <td align="center">40.4</td>
351
+ <td align="center">70.3</td>
352
+ <td align="center">70.8</td>
353
+ <td align="center">64.7</td>
354
+ </tr>
355
+ <tr>
356
+ <td >Tau-bench (Airline)</td>
357
+ <td align="center">51.5</td>
358
+ <td align="center">N/A</td>
359
+ <td align="center">38.5</td>
360
+ <td align="center">34.5</td>
361
+ <td align="center">37.5</td>
362
+ <td align="center">53.5</td>
363
+ </tr>
364
+ <tr>
365
+ <td >Tau-bench (Retail)</td>
366
+ <td align="center">62.8</td>
367
+ <td align="center">N/A</td>
368
+ <td align="center">10.2</td>
369
+ <td align="center">55.2</td>
370
+ <td align="center">58.3</td>
371
+ <td align="center">63.9</td>
372
+ </tr>
373
+ <tr>
374
+ <td align="center" colspan='7'><i>Multilinguality</i></td>
375
+ </tr>
376
+ <tr>
377
+ <td >KMMLU-Pro</td>
378
+ <td align="center">67.7</td>
379
+ <td align="center">55.8</td>
380
+ <td align="center">51.5</td>
381
+ <td align="center">61.4</td>
382
+ <td align="center">68.1</td>
383
+ <td align="center">71.7</td>
384
+ </tr>
385
+ <tr>
386
+ <td >KMMLU-Redux</td>
387
+ <td align="center">72.7</td>
388
+ <td align="center">62.7</td>
389
+ <td align="center">54.6</td>
390
+ <td align="center">67.5</td>
391
+ <td align="center">74.5</td>
392
+ <td align="center">77.0</td>
393
+ </tr>
394
+ <tr>
395
+ <td >KSM</td>
396
+ <td align="center">87.6</td>
397
+ <td align="center">79.8</td>
398
+ <td align="center">71.9</td>
399
+ <td align="center">82.8</td>
400
+ <td align="center">86.2</td>
401
+ <td align="center">86.7</td>
402
+ </tr>
403
+ <tr>
404
+ <td >MMMLU (ES)</td>
405
+ <td align="center">85.6</td>
406
+ <td align="center">84.3</td>
407
+ <td align="center">68.9</td>
408
+ <td align="center">82.8</td>
409
+ <td align="center">86.7</td>
410
+ <td align="center">88.2</td>
411
+ </tr>
412
+ <tr>
413
+ <td >MATH500 (ES)</td>
414
+ <td align="center">95.8</td>
415
+ <td align="center">94.2</td>
416
+ <td align="center">83.5</td>
417
+ <td align="center">94.3</td>
418
+ <td align="center">95.1</td>
419
+ <td align="center">96.0</td>
420
+ </tr>
421
+ </table>
422
+
423
+ ### 32B Non-Reasoning Mode
424
+
425
+ <table>
426
+ <tr>
427
+ <th> </th>
428
+ <th>EXAONE 4.0 32B </th>
429
+ <th>Phi 4</th>
430
+ <th>Mistral-Small-2506</th>
431
+ <th>Gemma 3 27B</th>
432
+ <th>Qwen3 32B </th>
433
+ <th>Qwen3 235B </th>
434
+ <th>Llama-4-Maverick</th>
435
+ <th>DeepSeek V3-0324</th>
436
+ </tr>
437
+ <tr>
438
+ <td align="center">Model Size</td>
439
+ <td align="center">32.0B</td>
440
+ <td align="center">14.7B</td>
441
+ <td align="center">24.0B</td>
442
+ <td align="center">27.4B</td>
443
+ <td align="center">32.8B</td>
444
+ <td align="center">235B</td>
445
+ <td align="center">402B</td>
446
+ <td align="center">671B</td>
447
+ </tr>
448
+ <tr>
449
+ <td align="center">Hybrid Reasoning</td>
450
+ <td align="center">✅</td>
451
+ <td align="center"> </td>
452
+ <td align="center"> </td>
453
+ <td align="center"> </td>
454
+ <td align="center">✅</td>
455
+ <td align="center">✅</td>
456
+ <td align="center"> </td>
457
+ <td align="center"> </td>
458
+ </tr>
459
+ <tr>
460
+ <td align="center" colspan='9'><i>World Knowledge</i></td>
461
+ </tr>
462
+ <tr>
463
+ <td >MMLU-Redux</td>
464
+ <td align="center">89.8</td>
465
+ <td align="center">88.3</td>
466
+ <td align="center">85.9</td>
467
+ <td align="center">85.0</td>
468
+ <td align="center">85.7</td>
469
+ <td align="center">89.2</td>
470
+ <td align="center">92.3</td>
471
+ <td align="center">92.3</td>
472
+ </tr>
473
+ <tr>
474
+ <td >MMLU-Pro</td>
475
+ <td align="center">77.6</td>
476
+ <td align="center">70.4</td>
477
+ <td align="center">69.1</td>
478
+ <td align="center">67.5</td>
479
+ <td align="center">74.4</td>
480
+ <td align="center">77.4</td>
481
+ <td align="center">80.5</td>
482
+ <td align="center">81.2</td>
483
+ </tr>
484
+ <tr>
485
+ <td >GPQA-Diamond</td>
486
+ <td align="center">63.7</td>
487
+ <td align="center">56.1</td>
488
+ <td align="center">46.1</td>
489
+ <td align="center">42.4</td>
490
+ <td align="center">54.6</td>
491
+ <td align="center">62.9</td>
492
+ <td align="center">69.8</td>
493
+ <td align="center">68.4</td>
494
+ </tr>
495
+ <tr>
496
+ <td align="center" colspan='9'><i>Math/Coding</i></td>
497
+ </tr>
498
+ <tr>
499
+ <td >AIME 2025</td>
500
+ <td align="center">35.9</td>
501
+ <td align="center">17.8</td>
502
+ <td align="center">30.2</td>
503
+ <td align="center">23.8</td>
504
+ <td align="center">20.2</td>
505
+ <td align="center">24.7</td>
506
+ <td align="center">18.0</td>
507
+ <td align="center">50.0</td>
508
+ </tr>
509
+ <tr>
510
+ <td >HMMT Feb 2025</td>
511
+ <td align="center">21.8</td>
512
+ <td align="center">4.0</td>
513
+ <td align="center">16.9</td>
514
+ <td align="center">10.3</td>
515
+ <td align="center">9.8</td>
516
+ <td align="center">11.9</td>
517
+ <td align="center">7.3</td>
518
+ <td align="center">29.2</td>
519
+ </tr>
520
+ <tr>
521
+ <td >LiveCodeBench v5</td>
522
+ <td align="center">43.3</td>
523
+ <td align="center">24.6</td>
524
+ <td align="center">25.8</td>
525
+ <td align="center">27.5</td>
526
+ <td align="center">31.3</td>
527
+ <td align="center">35.3</td>
528
+ <td align="center">43.4</td>
529
+ <td align="center">46.7</td>
530
+ </tr>
531
+ <tr>
532
+ <td >LiveCodeBench v6</td>
533
+ <td align="center">43.1</td>
534
+ <td align="center">27.4</td>
535
+ <td align="center">26.9</td>
536
+ <td align="center">29.7</td>
537
+ <td align="center">28.0</td>
538
+ <td align="center">31.4</td>
539
+ <td align="center">32.7</td>
540
+ <td align="center">44.0</td>
541
+ </tr>
542
+ <tr>
543
+ <td align="center" colspan='9'><i>Instruction Following</i></td>
544
+ </tr>
545
+ <tr>
546
+ <td >IFEval</td>
547
+ <td align="center">84.8</td>
548
+ <td align="center">63.0</td>
549
+ <td align="center">77.8</td>
550
+ <td align="center">82.6</td>
551
+ <td align="center">83.2</td>
552
+ <td align="center">83.2</td>
553
+ <td align="center">85.4</td>
554
+ <td align="center">81.2</td>
555
+ </tr>
556
+ <tr>
557
+ <td >Multi-IF (EN)</td>
558
+ <td align="center">71.6</td>
559
+ <td align="center">47.7</td>
560
+ <td align="center">63.2</td>
561
+ <td align="center">72.1</td>
562
+ <td align="center">71.9</td>
563
+ <td align="center">72.5</td>
564
+ <td align="center">77.9</td>
565
+ <td align="center">68.3</td>
566
+ </tr>
567
+ <tr>
568
+ <td align="center" colspan='9'><i>Long Context</i></td>
569
+ </tr>
570
+ <tr>
571
+ <td >HELMET</td>
572
+ <td align="center">58.3</td>
573
+ <td align="center">N/A</td>
574
+ <td align="center">61.9</td>
575
+ <td align="center">58.3</td>
576
+ <td align="center">54.5</td>
577
+ <td align="center">63.3</td>
578
+ <td align="center">13.7</td>
579
+ <td align="center">N/A</td>
580
+ </tr>
581
+ <tr>
582
+ <td >RULER</td>
583
+ <td align="center">88.2</td>
584
+ <td align="center">N/A</td>
585
+ <td align="center">71.8</td>
586
+ <td align="center">66.0</td>
587
+ <td align="center">85.6</td>
588
+ <td align="center">90.6</td>
589
+ <td align="center">2.9</td>
590
+ <td align="center">N/A</td>
591
+ </tr>
592
+ <tr>
593
+ <td >LongBench v1</td>
594
+ <td align="center">48.1</td>
595
+ <td align="center">N/A</td>
596
+ <td align="center">51.5</td>
597
+ <td align="center">51.5</td>
598
+ <td align="center">44.2</td>
599
+ <td align="center">45.3</td>
600
+ <td align="center">34.7</td>
601
+ <td align="center">N/A</td>
602
+ </tr>
603
+ <tr>
604
+ <td align="center" colspan='9'><i>Agentic Tool Use</i></td>
605
+ </tr>
606
+ <tr>
607
+ <td >BFCL-v3</td>
608
+ <td align="center">65.2</td>
609
+ <td align="center">N/A</td>
610
+ <td align="center">57.7</td>
611
+ <td align="center">N/A</td>
612
+ <td align="center">63.0</td>
613
+ <td align="center">68.0</td>
614
+ <td align="center">52.9</td>
615
+ <td align="center">63.8</td>
616
+ </tr>
617
+ <tr>
618
+ <td >Tau-Bench (Airline)</td>
619
+ <td align="center">25.5</td>
620
+ <td align="center">N/A</td>
621
+ <td align="center">36.1</td>
622
+ <td align="center">N/A</td>
623
+ <td align="center">16.0</td>
624
+ <td align="center">27.0</td>
625
+ <td align="center">38.0</td>
626
+ <td align="center">40.5</td>
627
+ </tr>
628
+ <tr>
629
+ <td >Tau-Bench (Retail)</td>
630
+ <td align="center">55.9</td>
631
+ <td align="center">N/A</td>
632
+ <td align="center">35.5</td>
633
+ <td align="center">N/A</td>
634
+ <td align="center">47.6</td>
635
+ <td align="center">56.5</td>
636
+ <td align="center">6.5</td>
637
+ <td align="center">68.5</td>
638
+ </tr>
639
+ <tr>
640
+ <td align="center" colspan='9'><i>Multilinguality</i></td>
641
+ </tr>
642
+ <tr>
643
+ <td >KMMLU-Pro</td>
644
+ <td align="center">60.0</td>
645
+ <td align="center">44.8</td>
646
+ <td align="center">51.0</td>
647
+ <td align="center">50.7</td>
648
+ <td align="center">58.3</td>
649
+ <td align="center">64.4</td>
650
+ <td align="center">68.8</td>
651
+ <td align="center">67.3</td>
652
+ </tr>
653
+ <tr>
654
+ <td >KMMLU-Redux</td>
655
+ <td align="center">64.8</td>
656
+ <td align="center">50.1</td>
657
+ <td align="center">53.6</td>
658
+ <td align="center">53.3</td>
659
+ <td align="center">64.4</td>
660
+ <td align="center">71.7</td>
661
+ <td align="center">76.9</td>
662
+ <td align="center">72.2</td>
663
+ </tr>
664
+ <tr>
665
+ <td >KSM</td>
666
+ <td align="center">59.8</td>
667
+ <td align="center">29.1</td>
668
+ <td align="center">35.5</td>
669
+ <td align="center">36.1</td>
670
+ <td align="center">41.3</td>
671
+ <td align="center">46.6</td>
672
+ <td align="center">40.6</td>
673
+ <td align="center">63.5</td>
674
+ </tr>
675
+ <tr>
676
+ <td >Ko-LongBench</td>
677
+ <td align="center">76.9</td>
678
+ <td align="center">N/A</td>
679
+ <td align="center">55.4</td>
680
+ <td align="center">72.0</td>
681
+ <td align="center">73.9</td>
682
+ <td align="center">74.6</td>
683
+ <td align="center">65.6</td>
684
+ <td align="center">N/A</td>
685
+ </tr>
686
+ <tr>
687
+ <td >MMMLU (ES)</td>
688
+ <td align="center">80.6</td>
689
+ <td align="center">81.2</td>
690
+ <td align="center">78.4</td>
691
+ <td align="center">78.7</td>
692
+ <td align="center">82.1</td>
693
+ <td align="center">83.7</td>
694
+ <td align="center">86.9</td>
695
+ <td align="center">86.7</td>
696
+ </tr>
697
+ <tr>
698
+ <td >MATH500 (ES)</td>
699
+ <td align="center">87.3</td>
700
+ <td align="center">78.2</td>
701
+ <td align="center">83.4</td>
702
+ <td align="center">86.8</td>
703
+ <td align="center">84.7</td>
704
+ <td align="center">87.2</td>
705
+ <td align="center">78.7</td>
706
+ <td align="center">89.2</td>
707
+ </tr>
708
+ <tr>
709
+ <td >WMT24++ (ES)</td>
710
+ <td align="center">90.7</td>
711
+ <td align="center">89.3</td>
712
+ <td align="center">92.2</td>
713
+ <td align="center">93.1</td>
714
+ <td align="center">91.4</td>
715
+ <td align="center">92.9</td>
716
+ <td align="center">92.7</td>
717
+ <td align="center">94.3 </td>
718
+ </tr>
719
+ </table>
720
+
721
+ ### 1.2B Reasoning Mode
722
+
723
+ <table>
724
+ <tr>
725
+ <th> </th>
726
+ <th>EXAONE 4.0 1.2B </th>
727
+ <th>EXAONE Deep 2.4B</th>
728
+ <th>Qwen 3 0.6B </th>
729
+ <th>Qwen 3 1.7B </th>
730
+ <th>SmolLM3 3B </th>
731
+ </tr>
732
+ <tr>
733
+ <td align="center">Model Size</td>
734
+ <td align="center">1.28B</td>
735
+ <td align="center">2.41B</td>
736
+ <td align="center">596M</td>
737
+ <td align="center">1.72B</td>
738
+ <td align="center">3.08B</td>
739
+ </tr>
740
+ <tr>
741
+ <td align="center">Hybrid Reasoning</td>
742
+ <td align="center">✅</td>
743
+ <td align="center"> </td>
744
+ <td align="center">✅</td>
745
+ <td align="center">✅</td>
746
+ <td align="center">✅</td>
747
+ </tr>
748
+ <tr>
749
+ <td align="center" colspan='6'><i>World Knowledge</i></td>
750
+ </tr>
751
+ <tr>
752
+ <td >MMLU-Redux</td>
753
+ <td align="center">71.5</td>
754
+ <td align="center">68.9</td>
755
+ <td align="center">55.6</td>
756
+ <td align="center">73.9</td>
757
+ <td align="center">74.8</td>
758
+ </tr>
759
+ <tr>
760
+ <td >MMLU-Pro</td>
761
+ <td align="center">59.3</td>
762
+ <td align="center">56.4</td>
763
+ <td align="center">38.3</td>
764
+ <td align="center">57.7</td>
765
+ <td align="center">57.8</td>
766
+ </tr>
767
+ <tr>
768
+ <td >GPQA-Diamond</td>
769
+ <td align="center">52.0</td>
770
+ <td align="center">54.3</td>
771
+ <td align="center">27.9</td>
772
+ <td align="center">40.1</td>
773
+ <td align="center">41.7</td>
774
+ </tr>
775
+ <tr>
776
+ <td align="center" colspan='6'><i>Math/Coding</i></td>
777
+ </tr>
778
+ <tr>
779
+ <td >AIME 2025</td>
780
+ <td align="center">45.2</td>
781
+ <td align="center">47.9</td>
782
+ <td align="center">15.1</td>
783
+ <td align="center">36.8</td>
784
+ <td align="center">36.7</td>
785
+ </tr>
786
+ <tr>
787
+ <td >HMMT Feb 2025</td>
788
+ <td align="center">34.0</td>
789
+ <td align="center">27.3</td>
790
+ <td align="center">7.0</td>
791
+ <td align="center">21.8</td>
792
+ <td align="center">26.0</td>
793
+ </tr>
794
+ <tr>
795
+ <td >LiveCodeBench v5</td>
796
+ <td align="center">44.6</td>
797
+ <td align="center">47.2</td>
798
+ <td align="center">12.3</td>
799
+ <td align="center">33.2</td>
800
+ <td align="center">27.6</td>
801
+ </tr>
802
+ <tr>
803
+ <td >LiveCodeBench v6</td>
804
+ <td align="center">45.3</td>
805
+ <td align="center">43.1</td>
806
+ <td align="center">16.4</td>
807
+ <td align="center">29.9</td>
808
+ <td align="center">29.1</td>
809
+ </tr>
810
+ <tr>
811
+ <td align="center" colspan='6'><i>Instruction Following</i></td>
812
+ </tr>
813
+ <tr>
814
+ <td >IFEval</td>
815
+ <td align="center">67.8</td>
816
+ <td align="center">71.0</td>
817
+ <td align="center">59.2</td>
818
+ <td align="center">72.5</td>
819
+ <td align="center">71.2</td>
820
+ </tr>
821
+ <tr>
822
+ <td >Multi-IF (EN)</td>
823
+ <td align="center">53.9</td>
824
+ <td align="center">54.5</td>
825
+ <td align="center">37.5</td>
826
+ <td align="center">53.5</td>
827
+ <td align="center">47.5</td>
828
+ </tr>
829
+ <tr>
830
+ <td align="center" colspan='6'><i>Agentic Tool Use</i></td>
831
+ </tr>
832
+ <tr>
833
+ <td >BFCL-v3</td>
834
+ <td align="center">52.9</td>
835
+ <td align="center">N/A</td>
836
+ <td align="center">46.4</td>
837
+ <td align="center">56.6</td>
838
+ <td align="center">37.1</td>
839
+ </tr>
840
+ <tr>
841
+ <td >Tau-Bench (Airline)</td>
842
+ <td align="center">20.5</td>
843
+ <td align="center">N/A</td>
844
+ <td align="center">22.0</td>
845
+ <td align="center">31.0</td>
846
+ <td align="center">37.0</td>
847
+ </tr>
848
+ <tr>
849
+ <td >Tau-Bench (Retail)</td>
850
+ <td align="center">28.1</td>
851
+ <td align="center">N/A</td>
852
+ <td align="center">3.3</td>
853
+ <td align="center">6.5</td>
854
+ <td align="center">5.4</td>
855
+ </tr>
856
+ <tr>
857
+ <td align="center" colspan='6'><i>Multilinguality</i></td>
858
+ </tr>
859
+ <tr>
860
+ <td >KMMLU-Pro</td>
861
+ <td align="center">42.7</td>
862
+ <td align="center">24.6</td>
863
+ <td align="center">21.6</td>
864
+ <td align="center">38.3</td>
865
+ <td align="center">30.5</td>
866
+ </tr>
867
+ <tr>
868
+ <td >KMMLU-Redux</td>
869
+ <td align="center">46.9</td>
870
+ <td align="center">25.0</td>
871
+ <td align="center">24.5</td>
872
+ <td align="center">38.0</td>
873
+ <td align="center">33.7</td>
874
+ </tr>
875
+ <tr>
876
+ <td >KSM</td>
877
+ <td align="center">60.6</td>
878
+ <td align="center">60.9</td>
879
+ <td align="center">22.8</td>
880
+ <td align="center">52.9</td>
881
+ <td align="center">49.7</td>
882
+ </tr>
883
+ <tr>
884
+ <td >MMMLU (ES)</td>
885
+ <td align="center">62.4</td>
886
+ <td align="center">51.4</td>
887
+ <td align="center">48.8</td>
888
+ <td align="center">64.5</td>
889
+ <td align="center">64.7</td>
890
+ </tr>
891
+ <tr>
892
+ <td >MATH500 (ES)</td>
893
+ <td align="center">88.8</td>
894
+ <td align="center">84.5</td>
895
+ <td align="center">70.6</td>
896
+ <td align="center">87.9</td>
897
+ <td align="center">87.5 </td>
898
+ </tr>
899
+ </table>
900
+
901
+ ### 1.2B Non-Reasoning Mode
902
+
903
+ <table>
904
+ <tr>
905
+ <th> </th>
906
+ <th>EXAONE 4.0 1.2B </th>
907
+ <th>Qwen 3 0.6B </th>
908
+ <th>Gemma 3 1B</th>
909
+ <th>Qwen 3 1.7B </th>
910
+ <th>SmolLM3 3B </th>
911
+ </tr>
912
+ <tr>
913
+ <td align="center">Model Size</td>
914
+ <td align="center">1.28B</td>
915
+ <td align="center">596M</td>
916
+ <td align="center">1.00B</td>
917
+ <td align="center">1.72B</td>
918
+ <td align="center">3.08B</td>
919
+ </tr>
920
+ <tr>
921
+ <td align="center">Hybrid Reasoning</td>
922
+ <td align="center">✅</td>
923
+ <td align="center">✅</td>
924
+ <td align="center"> </td>
925
+ <td align="center">✅</td>
926
+ <td align="center">✅</td>
927
+ </tr>
928
+ <tr>
929
+ <td align="center" colspan='6'><i>World Knowledge</i></td>
930
+ </tr>
931
+ <tr>
932
+ <td >MMLU-Redux</td>
933
+ <td align="center">66.9</td>
934
+ <td align="center">44.6</td>
935
+ <td align="center">40.9</td>
936
+ <td align="center">63.4</td>
937
+ <td align="center">65.0</td>
938
+ </tr>
939
+ <tr>
940
+ <td >MMLU-Pro</td>
941
+ <td align="center">52.0</td>
942
+ <td align="center">26.6</td>
943
+ <td align="center">14.7</td>
944
+ <td align="center">43.7</td>
945
+ <td align="center">43.6</td>
946
+ </tr>
947
+ <tr>
948
+ <td >GPQA-Diamond</td>
949
+ <td align="center">40.1</td>
950
+ <td align="center">22.9</td>
951
+ <td align="center">19.2</td>
952
+ <td align="center">28.6</td>
953
+ <td align="center">35.7</td>
954
+ </tr>
955
+ <tr>
956
+ <td align="center" colspan='6'><i>Math/Coding</i></td>
957
+ </tr>
958
+ <tr>
959
+ <td >AIME 2025</td>
960
+ <td align="center">23.5</td>
961
+ <td align="center">2.6</td>
962
+ <td align="center">2.1</td>
963
+ <td align="center">9.8</td>
964
+ <td align="center">9.3</td>
965
+ </tr>
966
+ <tr>
967
+ <td >HMMT Feb 2025</td>
968
+ <td align="center">13.0</td>
969
+ <td align="center">1.0</td>
970
+ <td align="center">1.5</td>
971
+ <td align="center">5.1</td>
972
+ <td align="center">4.7</td>
973
+ </tr>
974
+ <tr>
975
+ <td >LiveCodeBench v5</td>
976
+ <td align="center">26.4</td>
977
+ <td align="center">3.6</td>
978
+ <td align="center">1.8</td>
979
+ <td align="center">11.6</td>
980
+ <td align="center">11.4</td>
981
+ </tr>
982
+ <tr>
983
+ <td >LiveCodeBench v6</td>
984
+ <td align="center">30.1</td>
985
+ <td align="center">6.9</td>
986
+ <td align="center">2.3</td>
987
+ <td align="center">16.6</td>
988
+ <td align="center">20.6</td>
989
+ </tr>
990
+ <tr>
991
+ <td align="center" colspan='6'><i>Instruction Following</i></td>
992
+ </tr>
993
+ <tr>
994
+ <td >IFEval</td>
995
+ <td align="center">74.7</td>
996
+ <td align="center">54.5</td>
997
+ <td align="center">80.2</td>
998
+ <td align="center">68.2</td>
999
+ <td align="center">76.7</td>
1000
+ </tr>
1001
+ <tr>
1002
+ <td >Multi-IF (EN)</td>
1003
+ <td align="center">62.1</td>
1004
+ <td align="center">37.5</td>
1005
+ <td align="center">32.5</td>
1006
+ <td align="center">51.0</td>
1007
+ <td align="center">51.9</td>
1008
+ </tr>
1009
+ <tr>
1010
+ <td align="center" colspan='6'><i>Long Context</i></td>
1011
+ </tr>
1012
+ <tr>
1013
+ <td >HELMET</td>
1014
+ <td align="center">41.2</td>
1015
+ <td align="center">21.1</td>
1016
+ <td align="center">N/A</td>
1017
+ <td align="center">33.8</td>
1018
+ <td align="center">38.6</td>
1019
+ </tr>
1020
+ <tr>
1021
+ <td >RULER</td>
1022
+ <td align="center">77.4</td>
1023
+ <td align="center">55.1</td>
1024
+ <td align="center">N/A</td>
1025
+ <td align="center">65.9</td>
1026
+ <td align="center">66.3</td>
1027
+ </tr>
1028
+ <tr>
1029
+ <td >LongBench v1</td>
1030
+ <td align="center">36.9</td>
1031
+ <td align="center">32.4</td>
1032
+ <td align="center">N/A</td>
1033
+ <td align="center">41.9</td>
1034
+ <td align="center">39.9</td>
1035
+ </tr>
1036
+ <tr>
1037
+ <td align="center" colspan='6'><i>Agentic Tool Use</i></td>
1038
+ </tr>
1039
+ <tr>
1040
+ <td >BFCL-v3</td>
1041
+ <td align="center">55.7</td>
1042
+ <td align="center">44.1</td>
1043
+ <td align="center">N/A</td>
1044
+ <td align="center">52.2</td>
1045
+ <td align="center">47.3</td>
1046
+ </tr>
1047
+ <tr>
1048
+ <td >Tau-Bench (Airline)</td>
1049
+ <td align="center">10.0</td>
1050
+ <td align="center">31.5</td>
1051
+ <td align="center">N/A</td>
1052
+ <td align="center">13.5</td>
1053
+ <td align="center">38.0</td>
1054
+ </tr>
1055
+ <tr>
1056
+ <td >Tau-Bench (Retail)</td>
1057
+ <td align="center">21.7</td>
1058
+ <td align="center">5.7</td>
1059
+ <td align="center">N/A</td>
1060
+ <td align="center">4.6</td>
1061
+ <td align="center">6.7</td>
1062
+ </tr>
1063
+ <tr>
1064
+ <td align="center" colspan='6'><i>Multilinguality</i></td>
1065
+ </tr>
1066
+ <tr>
1067
+ <td >KMMLU-Pro</td>
1068
+ <td align="center">37.5</td>
1069
+ <td align="center">24.6</td>
1070
+ <td align="center">9.7</td>
1071
+ <td align="center">29.5</td>
1072
+ <td align="center">27.6</td>
1073
+ </tr>
1074
+ <tr>
1075
+ <td >KMMLU-Redux</td>
1076
+ <td align="center">40.4</td>
1077
+ <td align="center">22.8</td>
1078
+ <td align="center">19.4</td>
1079
+ <td align="center">29.8</td>
1080
+ <td align="center">26.4</td>
1081
+ </tr>
1082
+ <tr>
1083
+ <td >KSM</td>
1084
+ <td align="center">26.3</td>
1085
+ <td align="center">0.1</td>
1086
+ <td align="center">22.8</td>
1087
+ <td align="center">16.3</td>
1088
+ <td align="center">16.1</td>
1089
+ </tr>
1090
+ <tr>
1091
+ <td >Ko-LongBench</td>
1092
+ <td align="center">69.8</td>
1093
+ <td align="center">16.4</td>
1094
+ <td align="center">N/A</td>
1095
+ <td align="center">57.1</td>
1096
+ <td align="center">15.7</td>
1097
+ </tr>
1098
+ <tr>
1099
+ <td >MMMLU (ES)</td>
1100
+ <td align="center">54.6</td>
1101
+ <td align="center">39.5</td>
1102
+ <td align="center">35.9</td>
1103
+ <td align="center">54.3</td>
1104
+ <td align="center">55.1</td>
1105
+ </tr>
1106
+ <tr>
1107
+ <td >MATH500 (ES)</td>
1108
+ <td align="center">71.2</td>
1109
+ <td align="center">38.5</td>
1110
+ <td align="center">41.2</td>
1111
+ <td align="center">66.0</td>
1112
+ <td align="center">62.4</td>
1113
+ </tr>
1114
+ <tr>
1115
+ <td >WMT24++ (ES)</td>
1116
+ <td align="center">65.9</td>
1117
+ <td align="center">58.2</td>
1118
+ <td align="center">76.9</td>
1119
+ <td align="center">76.7</td>
1120
+ <td align="center">84.0 </td>
1121
+ </tr>
1122
+ </table>
1123
+
1124
+
1125
+
1126
+ ## Usage Guideline
1127
+
1128
+ > [!IMPORTANT]
1129
+ > To achieve the expected performance, we recommend using the following configurations:
1130
+ >
1131
+ > - For non-reasoning mode, we recommend using a lower temperature value such as `temperature<0.6` for better performance.
1132
+ > - For reasoning mode (using `<think>` block), we recommend using `temperature=0.6` and `top_p=0.95`.
1133
+ > - If you suffer from the model degeneration, we recommend using `presence_penalty=1.5`.
1134
+ > - For Korean general conversation with 1.2B model, we suggest to use `temperature=0.1` to avoid code switching.
1135
+
1136
+
1137
+ ## Limitation
1138
+
1139
+ The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflect the views of LG AI Research.
1140
+
1141
+ - Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
1142
+ - Biased responses may be generated, which are associated with age, gender, race, and so on.
1143
+ - The generated responses rely heavily on statistics from the training data, which can result in the generation of
1144
+ semantically or syntactically incorrect sentences.
1145
+ - Since the model does not reflect the latest information, the responses may be false or contradictory.
1146
+
1147
+ LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
1148
+ to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
1149
+ outputs violating LG AI's ethical principles when using EXAONE language models.
1150
+
1151
+
1152
+ ## License
1153
+
1154
+ The model is licensed under [EXAONE AI Model License Agreement 1.2 - NC](./LICENSE)
1155
+
1156
+ > [!NOTE]
1157
+ > The main difference from the older version is as below:
1158
+ > - We removed **the claim of model output ownership** from the license.
1159
+ > - We restrict the model use **against the development of models that compete with EXAONE**.
1160
+ > - We allow the model to be used for **educational purposes**, not just research.
1161
+
1162
+
1163
+ ## Citation
1164
+
1165
+ ```
1166
+ @article{exaone-4.0,
1167
+ title={EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes},
1168
+ author={{LG AI Research}},
1169
+ journal={arXiv preprint arXiv:2507.11407},
1170
+ year={2025}
1171
+ }
1172
+ ```
1173
+
1174
+
1175
+ ## Contact
1176
+
1177
+ LG AI Research Technical Support: [email protected]