danielhanchen commited on
Commit
85d4880
Β·
verified Β·
1 Parent(s): 899899f

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +256 -0
README.md ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - LiquidAI/LFM2-350M
4
+ library_name: transformers
5
+ license: other
6
+ license_name: lfm1.0
7
+ license_link: LICENSE
8
+ language:
9
+ - en
10
+ - ar
11
+ - zh
12
+ - fr
13
+ - de
14
+ - ja
15
+ - ko
16
+ - es
17
+ pipeline_tag: text-generation
18
+ tags:
19
+ - liquid
20
+ - unsloth
21
+ - lfm2
22
+ - edge
23
+ ---
24
+ > [!NOTE]
25
+ > Includes our **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
26
+ >
27
+
28
+ <div>
29
+ <p style="margin-top: 0;margin-bottom: 0;">
30
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
31
+ </p>
32
+ <div style="display: flex; gap: 5px; align-items: center; ">
33
+ <a href="https://github.com/unslothai/unsloth/">
34
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
35
+ </a>
36
+ <a href="https://discord.gg/unsloth">
37
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
38
+ </a>
39
+ <a href="https://docs.unsloth.ai/">
40
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
41
+ </a>
42
+ </div>
43
+ </div>
44
+
45
+
46
+ <center>
47
+ <div style="text-align: center;">
48
+ <img
49
+ src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
50
+ alt="Liquid AI"
51
+ style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
52
+ />
53
+ </div>
54
+
55
+ <a href="https://playground.liquid.ai/chat">
56
+ <svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;">
57
+ <title>Liquid: Playground</title>
58
+ <g>
59
+ <rect fill="#fff" width="600" height="200"></rect>
60
+ <rect fill="url(#x)" x="600" width="700" height="200"></rect>
61
+ </g>
62
+ <g transform="translate(20, 30) scale(0.4, 0.4)">
63
+ <path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
64
+ <path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
65
+ <path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
66
+ </g>
67
+ <g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
68
+ <text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text>
69
+ <text x="190" y="138" textLength="329" fill="#000">Liquid</text>
70
+ <text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
71
+ <text x="645" y="138" textLength="619">Playground</text>
72
+ </g>
73
+
74
+ <linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
75
+ <stop offset="0%" style="stop-color:#000000"></stop>
76
+ <stop offset="100%" style="stop-color:#000000"></stop>
77
+ </linearGradient>
78
+ </svg>
79
+ </a>
80
+ </center>
81
+
82
+ # LFM2-350M
83
+
84
+ LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
85
+
86
+ We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:
87
+
88
+ * **Fast training & inference** – LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
89
+ * **Best performance** – LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
90
+ * **New architecture** – LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
91
+ * **Flexible deployment** – LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.
92
+
93
+ Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).
94
+
95
+ ## πŸ“„ Model details
96
+
97
+ Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance.
98
+ They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations.
99
+ However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
100
+
101
+ | Property | Value |
102
+ | ------------------- | ----------------------------- |
103
+ | **Parameters** | 354,483,968 |
104
+ | **Layers** | 16 (10 conv + 6 attn) |
105
+ | **Context length** | 32,768 tokens |
106
+ | **Vocabulary size** | 65,536 |
107
+ | **Precision** | bfloat16 |
108
+ | **Training budget** | 10 trillion tokens |
109
+ | **License** | LFM Open License v1.0 |
110
+
111
+ **Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
112
+
113
+ **Generation parameters**: We recommend the following parameters:
114
+ * `temperature=0.3`
115
+ * `min_p=0.15`
116
+ * `repetition_penalty=1.05`
117
+
118
+ **Chat template**: LFM2 uses a ChatML-like chat template as follows:
119
+
120
+ ```
121
+ <|startoftext|><|im_start|>system
122
+ You are a helpful assistant trained by Liquid AI.<|im_end|>
123
+ <|im_start|>user
124
+ What is C. elegans?<|im_end|>
125
+ <|im_start|>assistant
126
+ It's a tiny nematode that lives in temperate soil environments.<|im_end|>
127
+ ```
128
+
129
+ You can apply it using the dedicated [`.apply_chat_template()`](https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate) function from Hugging Face transformers.
130
+
131
+ **Tool use**: It consists of four main steps:
132
+ 1. **Function definition**: LFM2 takes JSON function definitions as input (JSON objects between `<|tool_list_start|>` and `<|tool_list_end|>` special tokens), usually in the system prompt
133
+ 2. **Function call**: LFM2 writes Pythonic function calls (a Python list between `<|tool_call_start|>` and `<|tool_call_end|>` special tokens), as the assistant answer.
134
+ 3. **Function execution**: The function call is executed and the result is returned (string between `<|tool_response_start|>` and `<|tool_response_end|>` special tokens), as a "tool" role.
135
+ 4. **Final answer**: LFM2 interprets the outcome of the function call to address the original user prompt in plain text.
136
+
137
+ Here is a simple example of a conversation using tool use:
138
+
139
+ ```
140
+ <|startoftext|><|im_start|>system
141
+ List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
142
+ <|im_start|>user
143
+ What is the current status of candidate ID 12345?<|im_end|>
144
+ <|im_start|>assistant
145
+ <|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
146
+ <|im_start|>tool
147
+ <|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
148
+ <|im_start|>assistant
149
+ The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
150
+ ```
151
+
152
+ **Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
153
+
154
+ **Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
155
+
156
+ **Training approach**:
157
+ * Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model
158
+ * Very large-scale SFT on 50% downstream tasks, 50% general domains
159
+ * Custom DPO with length normalization and semi-online datasets
160
+ * Iterative model merging
161
+
162
+ ## πŸƒ How to run LFM2
163
+
164
+ To run LFM2, you need to install Hugging Face [`transformers`](https://github.com/huggingface/transformers) from source (v4.54.0.dev0).
165
+ You can update or install it with the following command: `pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"`.
166
+
167
+ Here is an example of how to generate an answer with transformers in Python:
168
+
169
+ ```python
170
+ from transformers import AutoModelForCausalLM, AutoTokenizer
171
+
172
+ # Load model and tokenizer
173
+ model_id = "LiquidAI/LFM2-350M"
174
+ model = AutoModelForCausalLM.from_pretrained(
175
+ model_id,
176
+ device_map="auto",
177
+ torch_dtype="bfloat16",
178
+ trust_remote_code=True,
179
+ # attn_implementation="flash_attention_2" <- uncomment on compatible GPU
180
+ )
181
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
182
+
183
+ # Generate answer
184
+ prompt = "What is C. elegans?"
185
+ input_ids = tokenizer.apply_chat_template(
186
+ [{"role": "user", "content": prompt}],
187
+ add_generation_prompt=True,
188
+ return_tensors="pt",
189
+ tokenize=True,
190
+ ).to(model.device)
191
+
192
+ output = model.generate(
193
+ input_ids,
194
+ do_sample=True,
195
+ temperature=0.3,
196
+ min_p=0.15,
197
+ repetition_penalty=1.05,
198
+ max_new_tokens=512,
199
+ )
200
+
201
+ print(tokenizer.decode(output[0], skip_special_tokens=False))
202
+
203
+ # <|startoftext|><|im_start|>user
204
+ # What is C. elegans?<|im_end|>
205
+ # <|im_start|>assistant
206
+ # C. elegans, also known as Caenorhabditis elegans, is a small, free-living
207
+ # nematode worm (roundworm) that belongs to the phylum Nematoda.
208
+ ```
209
+
210
+ You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/1_q3jQ6LtyiuPzFZv7Vw8xSfPU5FwkKZY?usp=sharing).
211
+
212
+ ## πŸ”§ How to fine-tune LFM2
213
+
214
+ We recommend fine-tuning LFM2 models on your use cases to maximize performance.
215
+
216
+ | Notebook | Description | Link |
217
+ |-------|------|------|
218
+ | SFT + LoRA | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter in TRL. | <a href="https://colab.research.google.com/drive/1j5Hk_SyBb2soUsuhU0eIEA9GwLNRnElF?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="120" alt="Colab link"></a> |
219
+ | DPO | Preference alignment with Direct Preference Optimization (DPO) in TRL. | <a href="https://colab.research.google.com/drive/1MQdsPxFHeZweGsNx4RH7Ia8lG8PiGE1t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="120" alt="Colab link"></a> |
220
+
221
+ ## πŸ“ˆ Performance
222
+
223
+ LFM2 outperforms similar-sized models across different evaluation categories.
224
+
225
+ ### 1. Automated benchmarks
226
+
227
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/3cB7VqMnrG9I8EqrL7k-q.png)
228
+
229
+ | Model | MMLU | GPQA | IFEval | IFBench | GSM8K | MGSM | MMMLU |
230
+ |-------|------|------|--------|---------|-------|------|-------|
231
+ | LFM2-350M | 43.43 | 27.46 | 65.12 | 16.41 | 30.1 | 29.52 | 37.99 |
232
+ | LFM2-700M | 49.9 | 28.48 | 72.23 | 20.56 | 46.4 | 45.36 | 43.28 |
233
+ | LFM2-1.2B | *55.23* | **31.47** | **74.89** | *20.7* | *58.3* | *55.04* | **46.73** |
234
+ | Qwen3-0.6B | 44.93 | 22.14 | 64.24 | 19.75 | 36.47 | 41.28 | 30.84 |
235
+ | Qwen3-1.7B | **59.11** | 27.72 | *73.98* | **21.27** | 51.4 | **66.56** | *46.51* |
236
+ | Llama-3.2-1B-Instruct | 46.6 | *28.84* | 52.39 | 16.86 | 35.71 | 29.12 | 38.15 |
237
+ | gemma-3-1b-it | 40.08 | 21.07 | 62.9 | 17.72 | **59.59** | 43.6 | 34.43 |
238
+
239
+ ### 2. LLM-as-a-Judge
240
+
241
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/4Yxx0l9aQ6ATrps5GWHzv.png)
242
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/lzpZOGwH-8bTlOWd3tv6M.png)
243
+
244
+ ### 3. Inference
245
+
246
+ #### Throughput comparison on CPU in ExecuTorch
247
+
248
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/KoKcsXUOnkvz2dwZ99k08.png)
249
+
250
+ #### Throughput comparison on CPU in Llama.cpp
251
+
252
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/c7UYZ5nh6qJMB4rd6WKde.png)
253
+
254
+ ## πŸ“¬ Contact
255
+
256
+ If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).