shimmyshimmer commited on
Commit
a5840a2
·
verified ·
1 Parent(s): 9a143f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -4
README.md CHANGED
@@ -99,15 +99,42 @@ license_name: llama4
99
  ---
100
  <div>
101
  <p style="margin-bottom: 0; margin-top: 0;">
102
- <strong>This 4-bit model currently only works with Unsloth! <br> See <a href="https://huggingface.co/collections/unsloth/llama-4-67f19503d764b0f3a2a868d2">our collection</a> for versions of Llama 4 including 4-bit & 16-bit formats.</strong>
103
  </p>
104
- <p style="margin-bottom: 0;">
105
- <em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
106
  </p>
 
 
 
 
 
 
 
 
 
 
107
  </div>
 
108
  </div>
109
 
110
- ## Model Information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
  The Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences. These models leverage a mixture-of-experts architecture to offer industry-leading performance in text and image understanding.
113
 
 
99
  ---
100
  <div>
101
  <p style="margin-bottom: 0; margin-top: 0;">
102
+ <strong>This <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit</a> model currently only works with Unsloth! <br> See <a href="https://huggingface.co/collections/unsloth/llama-4-67f19503d764b0f3a2a868d2">our collection</a> for versions of Llama 4 including 4-bit & 16-bit formats.</strong>
103
  </p>
104
+ <p style="margin-bottom: 0;">
105
+ <em><a href="https://docs.unsloth.ai/basics/tutorials-how-to-fine-tune-and-run-llms">Read our Guide</a> to see how to Fine-tune & Run Llama 4 correctly.</em>
106
  </p>
107
+ <div style="display: flex; gap: 5px; align-items: center; ">
108
+ <a href="https://github.com/unslothai/unsloth/">
109
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
110
+ </a>
111
+ <a href="https://discord.gg/unsloth">
112
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
113
+ </a>
114
+ <a href="https://docs.unsloth.ai/basics/tutorials-how-to-fine-tune-and-run-llms">
115
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
116
+ </a>
117
  </div>
118
+ <h1 style="margin-top: 0rem;">✨ Fine-tune Llama 4 with Unsloth!</h1>
119
  </div>
120
 
121
+ - Fine-tune Llama-4-Scout on a single H100 80GB GPU using Unsloth!
122
+ - Read our Blog about Llama 4 support: [unsloth.ai/blog/llama4](https://unsloth.ai/blog/llama4)
123
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
124
+ - Export your fine-tuned model to GGUF, Ollama, llama.cpp, vLLM or 🤗HF.
125
+
126
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
127
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
128
+ | **GRPO with Llama 3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb) | 2x faster | 80% less |
129
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
130
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
131
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
132
+ | **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
133
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
134
+
135
+ <br>
136
+
137
+ # Llama 4 model details
138
 
139
  The Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences. These models leverage a mixture-of-experts architecture to offer industry-leading performance in text and image understanding.
140