import hashlib import time import numpy as np from scipy import stats class TemporalLock: """ Geophysical Cycle-Based Cryptographic Validation Applications: - Secure log timestamping - Event chronology forensics """ def __init__(self): self.cycles = { 'schumann': 7.83, # Schumann resonance (Hz) 'solar': 11.2 # Solar cycle (years) } def stamp(self, data: str) -> dict: """Generate time-anchored signature""" t = time.time() moduli = [t % freq for freq in self.cycles.values()] return { 'timestamp': t, 'hash': hashlib.blake3( f"{data}_{t}_{moduli[0]}".encode() ).hexdigest(), 'cycle_alignments': moduli } def validate(self, events: list) -> float: """Calculate anomaly confidence (0.0-1.0)""" errors = sum(e['errors'] for e in events) total = sum(e['observations'] for e in events) return min(0.99, 1 - stats.binomtest( k=errors, n=total, p=0.05 ).pvalue)